期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第18卷 第11期 doi: 10.1016/j.eng.2021.11.027

FeNi/Al-Ce-O催化剂上的乙烷干重整——组成诱导的金属-载体强相互作用

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China

收稿日期: 2020-04-09 修回日期: 2021-10-27 录用日期: 2021-11-02 发布日期: 2022-06-02

下一篇 上一篇

摘要

在页岩气革命的背景下,乙烷干重整因在化学原料生产和碳减排方面的潜力而备受关注。本研究通过X射线光电子能谱、H2程序升温还原和能量散射X射线谱等手段,揭示了一种组成诱导的金属-载体强相互作用。氧化铈中Al的引入增强了金属与载体之间的相互作用,显著影响了Al-Ce-O载体表面FeNi活性组分的分散度,从而提升了FeNi/Al-Ce-O催化剂的乙烷干重整反应性能。随着载体中Al含量的增加,负载FeNi催化剂的乙烷和二氧化碳的转化率与转换频率(TOF)以及一氧化碳选择性和产率都呈现先增大后减小的趋势,与载体的理论有效表面积(TESA)的变化趋势相同。其中,Al含量为50%的FeNi/Ce-Al0.5催化剂在873 K下具有最好的乙烷干重整反应性能。结合原位傅里叶变换红外光谱(FTIR)分析观察到,Al的引入不仅增加了表面Ce3+和氧空位的含量,同时也促进了表面活性组分的分散,提升了负载FeNi催化剂的乙烷干重整性能。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Knutson TR, Tuleya RE. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 2004;17(18):3477‒95. 链接1

[ 2 ] Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. Global temperature change. Proc Natl Acad Sci USA 2006;103(39):14288‒93. 链接1

[ 3 ] Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science 2010;328(5985):1523‒8. 链接1

[ 4 ] Mimura N, Takahara I, Inaba M, Okamoto M, Murata K. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 as an oxidant. Catal Commun 2002;3(6):257‒62. 链接1

[ 5 ] Porosoff MD, Myint MNZ, Kattel S, Xie Z, Gomez E, Liu P, et al. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation. Angew Chem Int Ed Engl 2015;54(51):15501‒5. 链接1

[ 6 ] Myint MNZ, Yan B, Wan J, Zhao S, Chen JG. Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts. J Catal 2016;343:168‒77. 链接1

[ 7 ] Kattel S, Chen JG, Liu P. Mechanistic study of dry reforming of ethane by CO2 on a bimetallic PtNi(111) model surface. Catal Sci Technol 2018;8(15):3748‒58. 链接1

[ 8 ] Rostrup-Nielsen JR. Production of synthesis gas. Catal Today 1993;18(4):305‒24. 链接1

[ 9 ] Rostrup-Nielsen JR, Christensen TS, Dybkjaer I. Steam reforming of liquid hydrocarbons. Stud Surf Sci Catal 1998;113:81‒95. 链接1

[10] Bharadwaj SS, Schmidt LD. Catalytic partial oxidation of natural gas to syngas. Fuel Process Technol 1995;42(2‒3):109‒27.

[11] Wang S, Lu GQ, Millar GJ. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuels 1996;10(4):896‒904. 链接1

[12] Liu Z, Zhou J, Cao K, Yang W, Gao H, Wang Y, et al. Highly dispersed nickel loaded on mesoporous silica: one-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide. Appl Catal B Environ 2012;125:324‒30. 链接1

[13] Wang N, Shen K, Huang L, Yu X, Qian W, Chu W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal 2013;3(7):1638‒51. 链接1

[14] Liu Z, Lustemberg P, Gutiérrez RA, Carey JJ, Palomino RM, Vorokhta M, et al. In situ investigation of methane dry reforming on metal/ceria(111) surfaces: metal‒support interactions and C‒H bond activation at low temperature. Angew Chem Int Ed Engl 2017;56(42):13041‒6. 链接1

[15] Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 2014;43(22):7813‒37. 链接1

[16] Muraza O, Galadima A. A review on coke management during dry reforming of methane. Int J Energy Res 2015;39(9):1196‒216. 链接1

[17] Yan B, Yang X, Yao S, Wan J, Myint MNZ, Gomez E, et al. Dry reforming of ethane and butane with CO2 over PtNi/CeO2 bimetallic catalysts. ACS Catal 2016;6(11):7283‒92. 链接1

[18] Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int J Hydrogen Energy 2008;33(3):991‒9. 链接1

[19] Kambolis A, Matralis H, Trovarelli A, Papadopoulou C. Ni/CeO2‍-‍ZrO2 catalysts for the dry reforming of methane. Appl Catal A Gen 2010;377(1‒2):16‒26.

[20] Zhang S, Muratsugu S, Ishiguro N, Tada M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal 2013;3(8):1855‒64. 链接1

[21] Ay H, Üner D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl Catal B Environ 2015;179:128‒38. 链接1

[22] Li X, Li D, Tian H, Zeng L, Zhao ZJ, Gong J. Dry reforming of methane over Ni/ La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl Catal B Environ 2017;202:683‒94. 链接1

[23] Crisafulli C, Scirè S, Maggiore R, Minicò S, Galvagno S. CO2 reforming of methane over Ni-Ru and Ni-Pd bimetallic catalysts. Catal Lett 1999;59(1):21‒6. 链接1

[24] San-José-Alonso D, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl Catal A Gen 2009;371(1‒2):54‒9.

[25] García-Diéguez M, Finocchio E, Larrubia MÁ, Alemany LJ, Busca G. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J Catal 2010;274(1):11‒20. 链接1

[26] Wen S, Liang M, Zou J, Wang S, Zhu X, Liu Li, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane. J Mater Chem A 2015;3(25):13299‒307. 链接1

[27] Guo Y, Zou J, Shi X, Rukundo P, Wang Z. A Ni/CeO2-CDC-SiC catalyst with improved coke resistance in CO2 reforming of methane. ACS Sustain Chem Eng 2017;5(3):2330‒8. 链接1

[28] Guo Y, Li Y, Ning Y, Liu Q, Tian L, Zhang R, et al. CO2 Reforming of methane over a highly dispersed Ni/Mg-Al-O catalyst prepared by a facile and green method. Ind Eng Chem Res 2020;59(35):15506‒14. 链接1

[29] Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl Catal A Gen 2006;301(1):9‒15. 链接1

[30] Pechimuthu NA, Pant KK, Dhingra SC. Deactivation studies over Ni-K/ CeO2-Al2O3 catalyst for dry reforming of methane. Ind Eng Chem Res 2007;46(6):1731‒6. 链接1

[31] Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF. Effects of K2O promoter on the activity and stability of nickel catalysts supported on mesoporous nanocrystalline zirconia in CH4 reforming with CO2. Energy Fuels 2008;22(4):2195‒202. 链接1

[32] Rodriguez G, Bedel L, Roger AC, Udron L, Carballo L, Kiennemann A. Dry reforming of ethane on trimetallic perovskites LaCoxFe1-xO3: characterizations and reactivity. In: Liu CJ, Mallinson RG, Aresta M, editors. Utilization of greenhouse gases. Washington, DC: American Chemical Society; 2003. p. 69‒82. 链接1

[33] Zhao B, Yan B, Yao S, Xie Z, Wu Q, Ran R, et al. LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. J Catal 2018;358:168‒78. 链接1

[34] Liu Y, Wu Y, Akhtamberdinova Z, Chen X, Jiang G, Liu D. Dry reforming of shale gas and carbon dioxide with Ni‍-Ce‍-Al2O3 catalyst: syngas production enhanced over Ni‒CeOx formation. ChemCatChem 2018;10(20):4689‒98. 链接1

[35] Al-Mamoori A, Rownaghi AA, Rezaei F. Combined capture and utilization of CO2 for syngas production over dual-function materials. ACS Sustain Chem Eng 2018;6(10):13551‒61. 链接1

[36] Du X, Zhang D, Shi L, Gao R, Zhang J. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 2012;116(18):10009‒16. 链接1

[37] Wang N, Qian W, Chu W, Wei F. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming. Catal Sci Technol 2016;6(10):3594‒605. 链接1

[38] Liu Z, Grinter DC, Lustemberg PG, Nguyen-Phan TD, Zhou Y, Luo S, et al. Dry reforming of methane on a highly-active Ni‍-CeO2 catalyst: effects of metal‒support interactions on C‒H bond breaking. Angew Chem Int Ed Engl 2016;55 (26):7455‒9. 链接1

[39] Lustemberg PG, Ramírez PJ, Liu Z, Gutiérrez RA, Grinter DG, Carrasco J, et al. Room-temperature activation of methane and dry re-forming with CO2 on Ni‒CeO2(111) surfaces: effect of Ce3+ sites and metal‍‒‍support interactions on C‒H bond cleavage. ACS Catal 2016;6(12):8184‒91. 链接1

[40] Xie Z, Yan B, Lee JH, Wu Q, Li X, Zhao B, et al. Effects of oxide supports on the CO2 reforming of ethane over Pt‍-Ni bimetallic catalysts. Appl Catal B Environ 2019;245:376‒88. 链接1

[41] Wang N, Xu Z, Deng J, Shen K, Yu X, Qian W, et al. One-pot synthesis of ordered mesoporous NiCeAl oxide catalysts and a study of their performance in methane dry reforming. ChemCatChem 2014;6(5):1470‒80. 链接1

[42] Gao Q, Hao J, Qiu Y, Hu S, Hu Z. Electronic and geometric factors affecting oxygen vacancy formation on CeO2(111) surfaces: a first-principles study from trivalent metal doping cases. Appl Surf Sci 2019;497:143732. 链接1

[43] Yang L, Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina TR. Highly efficient Ni/CeO2‍-Al2O3 catalysts for CO2 upgrading via reverse water‒gas shift: effect of selected transition metal promoters. Appl Catal B Environ 2018;232:464‒71. 链接1

[44] Kim SM, Abdala PM, Margossian T, Hosseini D, Foppa L, Armutlulu A, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J Am Chem Soc 2017;139(5):1937‒49. 链接1

[45] Yan B, Yao S, Kattel S, Wu Q, Xie Z, Gomez E, et al. Active sites for tandem reactions of CO2 reduction and ethane dehydrogenation. Proc Natl Acad Sci USA 2018;115(33):8278‒83. 链接1

[46] Morris SM, Fulvio PF, Jaroniec M. Ordered mesoporous alumina-supported metal oxides. J Am Chem Soc 2008;130(45):15210‒6. 链接1

[47] Yuan Q, Duan HH, Li LL, Li ZX, Duan WT, Zhang LS, et al. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina. Adv Mater 2010;22(13):1475‒8. 链接1

[48] Li ZX, Shi FB, Zhang T, Wu HS, Sun LD, Yan CH. Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem Commun 2011;47 (28):8109‒11. 链接1

[49] Sun J, Feng Q, Liu Q, Ji S, Fang Y, Peng X, et al. An Al2O3-coated SiC-supported Ni catalyst with enhanced activity and improved stability for production of synthetic natural gas. Ind Eng Chem Res 2018;57(44):14899‒909. 链接1

[50] Rose AJ. Théorie et technique de la radiocristallographie, par A. Guinier. Bull Min 1956;79(10):619‒21. French.

[51] de Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Cryst 1982;15(3):308‒14. 链接1

[52] Rai R, Triloki T, Singh BK. X-ray diffraction line profile analysis of KBr thin films. Appl Phys A 2016;122(8):774. 链接1

[53] Sasikala R, Sudarsan V, Kulshreshtha SK. 27Al NMR studies of Ce‒Al mixed oxides: origin of 40 ppm peak. J Solid State Chem 2002;169(1):113‒7. 链接1

[54] Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L. XPS study of the reduction of cerium dioxide. Surf Interface Anal 1993;20(6):508‒12. 链接1

[55] Pfau A, Schierbaum KD. The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study. Surf Sci 1994;321(1‒2):71‒80.

[56] Shyu JZ, Weber WH, Gandhi HS. Surface characterization of aluminasupported ceria. J Phys Chem 1988;92(17):4964‒70. 链接1

[57] Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Chastain J, editor. Eden Prairie: Physical Electronics, Inc.; 1992.

[58] Wang WW, Yu WZ, Du PP, Xu H, Jin Z, Si R, et al. Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal‒support interaction. ACS Catal 2017;7(2):1313‒29. 链接1

[59] Taniguchi T, Watanabe T, Sugiyama N, Subramani AK, Wagata H, Matsushita N, et al. Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 2009;113(46):19789‒93. 链接1

[60] Wu Z, Li M, Howe J, Meyer 3rd HM, Overbury SH. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010;26(21):16595‒606. 链接1

[61] He D, Chen D, Hao H, Yu J, Liu J, Lu J, et al. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH3SH catalytic decomposition. Appl Surf Sci 2016;390:959‒67. 链接1

[62] Chen D, He D, Lu J, Zhong L, Liu F, Liu J, et al. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Appl Catal B Environ 2017;218:249‒59. 链接1

[63] Mierczynski P, Mierczynska A, Ciesielski R, Mosinska M, Nowosielska M, Czylkowska A, et al. High active and selective Ni/CeO2‍-Al2O3 and Pd‍-Ni/ CeO2-Al2O3 catalysts for oxy-steam reforming of methanol. Catalysts 2018;8(9):380. 链接1

[64] Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, et al. Catalyst support effects on hydrogen spillover. Nature 2017;541(7635):68‒71. 链接1

[65] Morterra C, Bolis V, Magnacca G. Surface characterization of modified aluminas. Part 4.—Surface hydration and Lewis acidity of CeO2‍-Al2O3 systems. J Chem Soc Faraday Trans 1996;92(11):1991‒9. 链接1

[66] Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf A Physicochem Eng Asp 2001;190(3):261‒74. 链接1

[67] Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J Catal 2006;237(1):1‒16. 链接1

[68] Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J Catal 2006;237 (1):17‒28. 链接1

[69] Badri A, Binet C, Lavalley JC. An FTIR study of surface ceria hydroxy groups during a redox process with H2. J Chem Soc Faraday Trans 1996;92(23):4669‒73. 链接1

[70] Binet C, Daturi M, Lavalley JC. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 1999;50(2):207‒25. 链接1

[71] Raskó J, Kiss J. Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl Catal A Gen 2005;287(2):252‒60. 链接1

[72] Trautmann S, Baerns M, Auroux A. In situ infrared spectroscopic and catalytic studies on the oxidation of ethane over supported palladium catalysts. J Catal 1992;136(2):613‒6. 链接1

[73] Zhang R, Wang H, Tang S, Liu C, Dong F, Yue H, et al. Photocatalytic oxidative dehydrogenation of ethane using CO2 as a soft oxidant over Pd/TiO2 catalysts to C2H4 and syngas. ACS Catal 2018;8(10):9280‒6. 链接1

[74] Yee A, Morrison SJ, Idriss H. A study of the reactions of ethanol on CeO2 and Pd/ CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J Catal 1999;186(2):279‒95. 链接1

[75] Yee A, Morrison SJ, Idriss H. A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal 2000;191(1):30‒45. 链接1

[76] Hwang K, Ihm S, Park J. Enhanced CeO2-supported Pt catalyst for water‒gas shift reaction. Fuel Process Technol 2010;91(7):729‒36. 链接1

[77] Li C, Sakata Y, Arai T, Domen K, Maruya K, Onishi T. Adsorption of carbon monoxide and carbon dioxide on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 2.—Formation of formate species on partially reduced CeO2 at room temperature. J Chem Soc Faraday Trans 1 1989;85 (6):1451‒61. 链接1

[78] Li C, Sakata Y, Arai T, Domen K, Maruya K, Onishi T. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.‍—Formation of carbonate species on dehydroxylated CeO2, at room temperature. J Chem Soc Faraday Trans 1 1989;85(4):929‒43. 链接1

[79] Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, et al. Bimetallic Ni‒Cu catalyst supported on CeO2 for high-temperature water‍‒‍gas shift reaction: methane suppression via enhanced CO adsorption. J Catal 2014;314:32‒46. 链接1

[80] Heracleous E, Lemonidou AA, Lercher JA. Mechanistic features of the ethane oxidative dehydrogenation by in situ FTIR spectroscopy over a MoO3/Al2O3 catalyst. Appl Catal A Gen 2004;264(1):73‒80. 链接1

相关研究