期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.01.014

材料、能源、机械工程中高效的电流变技术——从机理到应用

a Materials Genome Institute, Shanghai University, Shanghai 200444, China
b Zhejiang Laboratory, Hangzhou 311100, China
c Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
d School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
e Department of Physics, Shanghai University, Shanghai 200444, China
f Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China
g The Advanced Material Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511458, China

收稿日期: 2021-04-29 修回日期: 2021-11-03 录用日期: 2022-01-25 发布日期: 2022-05-16

下一篇 上一篇

摘要

电流变(ER)技术是一种基于电流变效应的先进技术。电流变技术中最常见的材料是电流变液(ERF)。电流变液是一种软物质智能材料,可以通过施加电场来可逆地调节其黏度。电流变液的衍生物,即一种新型的电响应软物质材料——电流变弹性体(ERE),由于其不沉降、易封装的优点也得到了越来越多的关注。电流变材料由于其可逆可调、快速响应、低能耗等特性在机械工程中有着广泛的应用。除了基础的电流变材料的合成和应用以外,电流变技术还应用在了能源材料制备、石油运输、储能等诸多领域。电流变技术在能源领域的应用为其在其他领域的潜在应用提供了一个很好的范例。本文结合最新的研究成果,从机理到应用,系统地综述了电流变技术在材料、能源和机械工程等领域的研究现状和未来发展前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Hao T. Electrorheological fluids. Adv Mater 2001;13(24):1847‒57. 链接1

[ 2 ] Korobko EV, Matsepuro AD. Electrorheology: from its beginning to the present. J Eng Phys Thermophys 2010;83(4):707‒14. 链接1

[ 3 ] Sheng P, Wen W. Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annu Rev Fluid Mech 2012;44(1):143‒74. 链接1

[ 4 ] Dong YZ, Seo Y, Choi HJ. Recent development of electro-responsive smart electrorheological fluids. Soft Matter 2019;15(17):3473‒86. 链接1

[ 5 ] Wu H, Xu ZC, Wu JB, Wen WJ. Research progress of field-induced soft smart materials. Int J Mod Phys B 2018;32(18):1840010. 链接1

[ 6 ] Winslow WM. Induced fibrillation of suspensions. J Appl Phys 1949;20(12):1137‒40. 链接1

[ 7 ] Lvkov AV, editor. Electrorheological effect. Minsk: Nauka i tekhnika; 1972. Russian.

[ 8 ] Wen W, Huang X, Yang S, Lu K, Sheng P. The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2003;2(11):727‒30. 链接1

[ 9 ] Sadeghi A, Beccai L, Mazzolai B. Innovative soft robots based on electro-rheological fluids. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2012 Oct 7‒12; Vilamoura-Algarve, Portugal. Piscataway: IEEE; 2012. p. 4237‒42. 链接1

[10] Miyoshi T, Yoshida K, Kim JW, Eom SI, Yokota S. An MEMS-based multiple electro-rheological bending actuator system with an alternating pressure source. Sens Actuators A Phys 2016;245:68‒75. 链接1

[11] Wang L, Yang Y, Chen Y, Majidi C, Iida F, Askounis E, et al. Controllable and reversible tuning of material rigidity for robot applications. Mater Today 2018;21(5):563‒76. 链接1

[12] Xu Z, Wu H, Zhang M, Wu J, Wen W. The research progress of electrorheological fluids. Chin Sci Bull 2017;62(21):2358‒71. 链接1

[13] Qiu Z, Huang J, Shen R, Wang Y, Wu X, Lu K, et al. The role of adsorbed water on TiO2 particles in the electrorheological effect. AIP Adv 2018;8(10):105319. 链接1

[14] Liang Y, Yuan X, Wang L, Zhou X, Ren X, Huang Y, et al. Highly stable and efficient electrorheological suspensions with hydrophobic interaction. J Colloid Interface Sci 2020;564:381‒91. 链接1

[15] Yoon CM, Jang Y, Noh J, Kim J, Lee K, Jang J. Enhanced electrorheological performance of mixed silica nanomaterial geometry. ACS Appl Mater Interfaces 2017;9(41):36358‒67. 链接1

[16] He K, Wen Q, Wang C, Wang B, Yu S, Hao C, et al. A facile synthesis of hierarchical flower-like TiO2 wrapped with MoS2 sheets nanostructure for enhanced electrorheological activity. Chem Eng J 2018;349:416‒27. 链接1

[17] Wen Q, He K, Wang C, Wang B, Yu S, Hao C, et al. Clip-like polyaniline nanofibers synthesized by an in-situ chemical oxidative polymerization and its strong electrorheological behavior. Synth Met 2018;239:1‒12. 链接1

[18] Xu Z, Hong Y, Zhang M, Wu J, Wen W. Performance tuning of giant electrorheological fluids by interfacial tailoring. Soft Matter 2018;14(8):1427‒33. 链接1

[19] Dong X, Niu C, Qi M. Electrorheological elastomers. In: Cankava N, editor. Elastomers. Rijeka: INTECH; 2017. p. 3‒19. 链接1

[20] Shiga T, Okada A, Kurauchi T. Electroviscoelastic effect of polymer blends consisting of silicone elastomer and semiconducting polymer particles. Macromolecules 1993;26(25):6958‒63. 链接1

[21] Tao R, Du E, Tang H, Xu X. Neutron scattering studies of crude oil viscosity reduction with electric field. Fuel 2014;134:493‒8. 链接1

[22] Tao R, Tang H, Tawhid-Al-Islam K, Du E, Kim J. Electrorheology leads to healthier and tastier chocolate. Proc Natl Acad Sci USA 2016;113(27):7399‒402. 链接1

[23] Liu X, Peng S, Gao S, Cao Y, You Q, Zhou L, et al. Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte. ACS Appl Mater Interfaces 2018;10(18):15691‒6. 链接1

[24] Tao R, Xu X. Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy Fuels 2006;20(5):2046‒51. 链接1

[25] Xia M, Nie J, Zhang Z, Lu X, Wang ZL. Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 2018;47:43‒50. 链接1

[26] Zhang M, Wang L, Wang X, Wu J, Li J, Gong X, et al. Microdroplet-based universal logic gates by electrorheologicald fluid. Soft Matter 2011;7(16):7493‒7. 链接1

[27] Agafonov AV, Zakharov AG. Electrorheological fluids. Russ J Gen Chem 2010;80(3):567‒75. 链接1

[28] Klass DL, Martinek TW. Electroviscous fluids. I. Rheological properties. J Appl Phys 1967;38(1):67‒74. 链接1

[29] Stangroom JE. Electrorheological fluids. Phys Technol 1983;14(6):290‒6. 链接1

[30] Block H, Kelly JP. Electro-rheology. J Phys D Appl Phys 1988;21(12):1661‒77. 链接1

[31] Ma H, Wen W, Tam WY, Sheng P. Frequency dependent electrorheological properties: origin and bounds. Phys Rev Lett 1996;77(12):2499‒502. 链接1

[32] Wang X, Shen R, Wen W, Lu K. High performance calcium titanate nanoparticle ER fluids. Int J Mod Phys B 2005;19(7‒9):1110‒3. 链接1

[33] Shen R, Wang X, Lu Y, Sun G, Wen W, Lu K. The methods for measuring shear stress of polar molecule dominated ER fluids. J Appl Phys 2007;102(2):024106.

[34] Tan P, Tian WJ, Wu XF, Huang JY, Zhou LW, Huang JP. Saturated orientational polarization of polar molecules in giant electrorheological fluids. J Phys Chem B 2009;113(27):9092‒7. 链接1

[35] Choi K, Gao CY, Nam JD, Choi HJ. Cellulose-based smart fluids under applied electric fields. Materials 2017;10(9):1060. 链接1

[36] Hong CH, Choi HJ, Seo Y. Comment on “Transient overshoot of the electrorheological responses of conducting polymer-coated polyethylene suspensions in mineral oil”. Synth Met 2008;158(1‒2):72‒4.

[37] Seo YP, Seo Y. Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 2012;28(6):3077‒84. 链接1

[38] Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y. Searching for a stable high-performance magnetorheological suspension. Adv Mater 2018;30 (42):1704769. 链接1

[39] Cho MS, Choi HJ, Jhon MS. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 2005;46(25):11484‒8. 链接1

[40] Lu Q, Han WJ, Choi HJ. Smart and functional conducting polymers: application to electrorheological fluids. Molecules 2018;23(11):2854. 链接1

[41] Liu YD, Choi HJ. Electrorheological fluids: smart soft matter and characteristics. Soft Matter 2012;8(48):11961‒78. 链接1

[42] Do T, Ko YG, Chun Y, Jung Y, Choi US, Park YS, et al. Switchable electrorheological activity of polyacrylonitrile microspheres by thermal treatment: from negative to positive. Soft Matter 2018;14(44):8912‒23. 链接1

[43] Kuznetsov NM, Belousov SI, Kamyshinsky RA, Vasiliev AL, Chvalun SN, Yudina EB, et al. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: effect of nanodiamonds surface. Carbon 2021;174:138‒47. 链接1

[44] Qiu Z, Shen R, Huang J, Lu K, Xiong X. A giant electrorheological fluid with a long lifetime and good thermal stability based on TiO2 inlaid with nanocarbons. J Mater Chem C 2019;7(19):5816‒20. 链接1

[45] Liang Y, Liu Y, Zhou Y, et al. Efficient and stable electrorheological fluids based on chestnut-like cobalt hydroxide coupled with surface-functionalized carbon dots. Soft Matter 2022;18(20):3845‒55. 链接1

[46] Dong Y, Yin J, Zhao X. Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity. J Mater Chem A 2014;2(25):9812‒9. 链接1

[47] He F, Wang B, Zhao J, Zhao X, Yin J. Influence of tethered ions on electric polarization and electrorheological property of polymerized ionic liquids. Molecules 2020;25(12):2896. 链接1

[48] Zhao J, Lei Q, He F, Zheng C, Liu Y, Zhao X, et al. Nonmonotonic influence of size of quaternary ammonium countercations on micromorphology, polarization, and electroresponse of anionic poly(ionic liquid)s. J Phys Chem B 2020;124(14):2920‒9. 链接1

[49] Zhao J, Lei Q, He F, Zheng C, Zhao X, Yin J. Influence of geometry of mobile countercations on conductivity, polarization and electrorheological effect of polymeric anionic liquids at ice point temperature. Polymer 2020;205:122826. 链接1

[50] Zhang WL, Liu YD, Choi HJ. Graphene oxide coated core‒shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J Mater Chem 2011;21(19):6916‒21. 链接1

[51] Zhang WL, Liu YD, Choi HJ, Seo Y. Core‒shell structured graphene oxide-adsorbed anisotropic poly (methyl methacrylate) microparticles and their electrorheology. RSC Adv 2013;3(29):11723‒31. 链接1

[52] Kim SD, Zhang WL, Choi HJ. Pickering emulsion-fabricated polystyrene‒graphene oxide microspheres and their electrorheology. J Mater Chem C 2014;2(36):7541‒6. 链接1

[53] Kutalkova E, Mrlik M, Ilcikova M, Osicka J, Sedlacik M, Mosnacek J. Enhanced and tunable electrorheological capability using surface initiated atom transfer radical polymerization modification with simultaneous reduction of the graphene oxide by silyl-based polymer grafting. Nanomaterials 2019;9 (2):308. 链接1

[54] Wang J, Sun H, Yang Z, Wang Y, Zhao X, Yin J. Improved electrorheological polishing property of poly(ionic liquid)/Al2O3 composite particles prepared via Pickering emulsion polymerization. ACS Appl Polym Mater 2021;3(11):5778‒87. 链接1

[55] Zhang WL, Choi HJ. Fabrication and electrorheology of graphene oxide/ionic N-substituted copolyaniline composite. Colloid Polym Sci 2013;291(6):1401‒8. 链接1

[56] Lee S, Kim YK, Hong JY, Jang J. Electro-response of MoS2 nanosheets-based smart fluid with tailorable electrical conductivity. ACS Appl Mater Interfaces 2016;8(36):24221‒9. 链接1

[57] Hwang JK, Shin K, Lim HS, Cho JC, Kim JW, Suh KD. The effects of particle conductivity on the electrorheological properties of functionalized MCNT-coated doublet-shaped anisotropic microspheres. Macromol Res 2012;20(4):391‒6. 链接1

[58] Lengálová A, Pavlínek V, Sáha P, Quadrat O, Kitano T, Stejskal J. Influence of particle concentration on the electrorheological efficiency of polyaniline suspensions. Eur Polym J 2003;39(4):641‒5. 链接1

[59] Tian Y, Meng Y, Wen S. Particulate volume effect in suspensions with strong electrorheological response. Mater Lett 2003;57(19):2807‒11. 链接1

[60] Song Z, Cheng Y, Wu J, Guo J, Xu G. Influence of volume fraction on the yield behavior of giant electrorheological fluid. Appl Phys Lett 2012;101(10):101908. 链接1

[61] Wen W, Huang X, Sheng P. Particle size scaling of the giant electrorheological effect. Appl Phys Lett 2004;85(2):299‒301. 链接1

[62] Wu CW, Conrad H. Influence of mixed particle size on electrorheological response. J Appl Phys 1998;83(7):3880‒4. 链接1

[63] Chuah WH, Zhang WL, Choi HJ, Seo Y. Magnetorheology of core‒shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability. Macromolecules 2015;48(19):7311‒9. 链接1

[64] Wu J, Xu G, Cheng Y, Liu F, Guo J, Cui P. The influence of high dielectric constant core on the activity of core‒shell structure electrorheological fluid. J Colloid Interface Sci 2012;378(1):36‒43. 链接1

[65] Wu J, Jin T, Liu F, Guo J, Cheng Y, Xu G. Formamide-modified titanium oxide nanoparticles with high electrorheological activity. RSC Adv 2014;4(56):29622‒8. 链接1

[66] Li J, Gong X, Chen S, Wen W, Sheng P. Giant electrorheological fluid comprising nanoparticles: carbon nanotube composite. J Appl Phys 2010;107(9):093507. 链接1

[67] Min TH, Lee CJ, Choi HJ. Pickering emulsion polymerized core‒shell structured poly(methyl methacrylate)/graphene oxide particles and their electrorheological characteristics. Polym Test 2018;66:195‒202. 链接1

[68] Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P. Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 2011;289(7):799‒805. 链接1

[69] Gao CY, Meng LY, Piao SH, Choi HJ. Hollow submicron-sized spherical conducting polyaniline particles and their suspension rheology under applied electric fields. Polymer 2018;140:80‒8. 链接1

[70] Sung BH, Choi US, Jang HG, Park YS. Novel approach to enhance the dispersion stability of ER fluids based on hollow polyaniline sphere particle. Colloids Surf A Physicochem Eng Asp 2006;274(1‒3):37‒42.

[71] Sedlačík M, Mrlík M, Pavlínek V, Sáha P, Quadrat O. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym Sci 2012;290(1):41‒8. 链接1

[72] Li C, He K, Sun W, Wang B, Yu S, Hao C, et al. Synthesis of hollow TiO2 nanobox with enhanced electrorheological activity. Ceram Int 2020;46(10):14573‒82. 链接1

[73] Lee S, Lee J, Hwang SH, Yun J, Jang J. Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles. ACS Nano 2015;9(5):4939‒49. 链接1

[74] Yoon CM, Cho KH, Jang Y, Kim J, Lee K, Yu H, et al. Synthesis and electroresponse activity of porous polypyrrole/silica‍‒‍titania core/shell nanoparticles. Langmuir 2018;34(51):15773‒82. 链接1

[75] Gwon H, Park S, Lee S. Ecoresorbable smart fluids with controlled electroresponsive properties by various metal doping. J Mater Chem C 2020;8(44):15751‒8. 链接1

[76] Park S, Gwon H, Lee S. Electroresponsive performances of ecoresorbable smart fluids consisting of various plant-derived carrier liquids. Chem Eur J 2021;27(55):13739‒47. 链接1

[77] Hong JY, Choi M, Kim C, Jang J. Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials. J Colloid Interface Sci 2010;347(2):177‒82. 链接1

[78] Lee S, Yoon CM, Hong JY, Jang J. Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio. J Mater Chem C 2014;2(30):6010‒6. 链接1

[79] Wu J, Jin T, Liu F, Guo J, Cui P, Cheng Y, et al. Preparation of rod-like calcium titanyl oxalate with enhanced electrorheological activity and their morphological effect. J Mater Chem C 2014;2(28):5629. 链接1

[80] Dong X, Ma N, Yang H, Han B, Qi M. The contribution of friction to electrorheological properties of a chrysanthemum-like particle suspension. RSC Adv 2015;5(91):74656‒63. 链接1

[81] Wang Z, Song X, Wang B, Tian X, Hao C, Chen K. Bionic cactus-like titanium oxide microspheres and its smart electrorheological activity. Chem Eng J 2014;256:268‒79. 链接1

[82] Wu J, Zhang L, Xin X, Zhang Y, Wang H, Sun A, et al. Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate. ACS Appl Mater Interfaces 2018;10(7):6785‒92. 链接1

[83] Wu J, Song Z, Liu F, Guo J, Cheng Y, Ma S, et al. Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Mater 2016;8(11): e322. 链接1

[84] Roman C, García-Morales M, Goswami S, Marques AC, Cidade MT. The electrorheological performance of polyaniline-based hybrid particles suspensions in silicone oil: influence of the dispersing medium viscosity. Smart Mater Struct 2018;27(7):075001. 链接1

[85] Gong X, Wu J, Huang X, Wen W, Sheng P. Influence of liquid phase on nanoparticle-based giant electrorheological fluid. Nanotechnology 2008;19 (16):165602. 链接1

[86] Ma N, Dong X. Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions. J Wuhan Univ Technol 2017;32(4):854‒61. 链接1

[87] Hong Y, Wen W. Influence of carrier liquid on nanoparticle-based giant electrorheological fluid. J Intell Mater Syst Struct 2016;27(7):866‒71. 链接1

[88] Shen C, Wen W, Yang S, Sheng P. Wetting-induced electrorheological effect. J Appl Phys 2006;99(10):106104. 链接1

[89] Wei J, Zhao L, Peng S, Shi J, Liu Z, Wen W. Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects. J Sol Gel Sci Technol 2008;47(3):311‒5. 链接1

[90] Wang B, Zhou M, Rozynek Z, Fossum JO. Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 2009;19:1816‒28. 链接1

[91] Wang BX, Zhao Y, Zhao XP. The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2007;295(1‒3):27‒33.

[92] Palmer M, Hatley H. The role of surfactants in wastewater treatment: impact, removal and future techniques: a critical review. Water Res 2018;147:60‒72. 链接1

[93] McIntyre C, Yang H, Green PF. Electrorheology of suspensions containing interfacially active constituents. ACS Appl Mater Interfaces 2013;5(18):8925‒31. 链接1

[94] Qiao Y, Yin J, Zhao X. Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles. Smart Mater Struct 2007;16(2):332‒9. 链接1

[95] Xu H, Wu J, Hong Y, Wen W. The surfactant effect on electrorheological performance and colloidal stability. Soft Matter 2021;17(30):7158‒67. 链接1

[96] Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1990;1(1‒6):244‒8. 链接1

[97] Niu X, Wen W, Lee YK. Electrorheological-fluid-based microvalves. Appl Phys Lett 2005;87(24):243501. 链接1

[98] Niu X, Liu L, Wen W, Sheng P. Hybrid approach to high-frequency microfluidic mixing. Phys Rev Lett 2006;97(4):044501. 链接1

[99] Liu L, Chen X, Niu X, Wen W, Sheng P. Electrorheological fluid-actuated microfluidic pump. Appl Phys Lett 2006;89(8):083505. 链接1

[100] Huo X, Yossifon G. Tunable electrorheological fluid microfluidic rectifier: irreversibility of viscous flow due to spatial asymmetry induced memory effects. Phys Rev Lett 2019;123(19):194502. 链接1

[101] Niu X, Zhang M, Wu J, Wen W, Sheng P. Generation and manipulation of “smart” droplets. Soft Matter 2009;5(3):576‒81. 链接1

[102] Zhang M, Wu J, Niu X, Wen W, Sheng P. Manipulations of microfluidic droplets using electrorheological carrier fluid. Phys Rev E 2008;78(6):066305. 链接1

[103] Wang L, Zhang M, Li J, Gong X, Wen W. Logic control of microfluidics with smart colloid. Lab Chip 2010;10(21):2869‒74. 链接1

[104] Wu J, Wen W, Sheng P. Smart electroresponsive droplets in microfluidics. Soft Matter 2012;8(46):11589‒99. 链接1

[105] Hasheminejad SM, Cheraghi M, Jamalpoor A. Active damping of sound transmission through an electrorheological fluid-actuated sandwich cylindrical shell. J Sandw Struct Mater 2020;22(3):833‒65. 链接1

[106] Zhao YL, Xu ZD. A hysteretic model considering Stribeck effect for small-scale magnetorheological damper. Smart Mater Struct 2018;27(6):065021. 链接1

[107] Pu H, Huang Y, Sun Y, Wang M, Yuan S, Kong Z, et al. Design and experiment of bio-inspired GER fluid damper. Sci China Inf Sci 2020;63(7):170206. 链接1

[108] Sun Y, Huang Y, Wang M, Wu J, Yuan S, Ding J, et al. Design, testing and modelling of a tuneable GER fluid damper under shear mode. Smart Mater Struct 2020;29(8):085011. 链接1

[109] Ma N, Zhang Z, Dong X, Wang Q, Niu C, Han B. Dynamic viscoelasticity and phenomenological model of electrorheological elastomers. J Appl Polym Sci 2017;134(41):45407. 链接1

[110] Niu C, Dong X, Qi M. Damping mechanism and theoretical model of electrorheological elastomers. Soft Matter 2017;13(32):5409‒20. 链接1

[111] Shen R, Wang X, Lu Y, Wang D, Sun G, Cao Z, et al. Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv Mater 2009;21 (45):4631‒5. 链接1

[112] Niu C, Dong X, Qi M. Enhanced electrorheological properties of elastomers containing TiO2/urea core‒shell particles. ACS Appl Mater Interfaces 2015;7(44):24855‒63. 链接1

[113] Dong X, Niu C, Qi M. Enhancement of electrorheological performance of electrorheological elastomers by improving TiO2 particles/silicon rubber interface. J Mater Chem C 2016;4(28):6806‒15. 链接1

[114] Kossi A, Bossis G, Persello J. Electro-active elastomer composites based on doped titanium dioxide. J Mater Chem C 2015;3(7):1546‒56. 链接1

[115] Gao L, Zhan L, Liu W, Zhang Y, Xie Z, Ren J. Preparation and electro responsive properties of Mg-doped BaTiO3 with novel morphologies. J Mater Sci Mater Electron 2019;30(13):12107‒12. 链接1

[116] Liu W, Xie Z, Lu Y, Gao M, Zhang W, Gao L. Fabrication and excellent electroresponsive properties of ideal PMMA@BaTiO3 composite particles. RSC Adv 2019;9(22):12404‒14. 链接1

[117] Yuan X, Zhou X, Liang Y, Wang L, Chen R, Zhang M, et al. A stable high-performance isotropic electrorheological elastomer towards controllable and reversible circular motion. Compos Part B Eng 2020;193:107988. 链接1

[118] Sakurai R, See H, Saito T, Sumita M. Effect of matrix viscoelasticity on the electrorheological properties of particle suspensions. J Non-Newton Fluid Mech 1999;81(3):235‒50. 链接1

[119] Cao C, Zhao X. Tunable stiffness of electrorheological elastomers by designing mesostructures. Appl Phys Lett 2013;103(4):041901. 链接1

[120] Biggerstaff JM, Kosmatka JB. Electroviscoelastic materials as active dampers. In: Bar-Cohen Y, editor. Proceedings of SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD); 2002 Jul 11; San Diego, CA, USA. Bellingham: International Society for Optics and Photonics (SPIE); 2002. p. 345‒50. 链接1

[121] Wei K, Bai Q, Meng G, Ye L. Vibration characteristics of electro-rheological elastomer sandwich beams. Smart Mater Struct 2011;20(5): 055012. 链接1

[122] Koyanagi K, Yamaguchi T, Kakinuma Y, Anzai H, Sakurai K, Oshima T. Basic research of electro-rheological gel drum for novel linear actuator. J Phys Conf Ser 2009;149:012020. 链接1

[123] Zhu SS, Qian XP, He H, Zhang QF. Experimental research about the application of ER elastomer in the shock absorber. Adv Mat Res 2013;641‒642:371‒6.

[124] Ma N, Yao Y, Wang Q, Niu C, Dong X. Properties and mechanical model of a stiffness tunable viscoelastic damper based on electrorheological elastomers. Smart Mater Struct 2020;29(4):045041. 链接1

[125] Zhou X, Wang L, Huang D, Liang Y, Shi Q, Yaying H, et al. Smart table tennis racket with tunable stiffness for diverse play styles and unconventional technique training. Adv Mater Technol 2021;6(10):2100535. 链接1

[126] Chou PC, Lin FP, Hsu HL, Chang CJ, Lu CH, Chen JK. Electrorheological sensor encapsulating microsphere media for plague diagnosis with rapid visualization. ACS Sens 2020;5(3):665‒73. 链接1

[127] Tao R. Electrorheology for efficient energy production and conservation. J Intell Mater Syst Struct 2011;22(15):1667‒71. 链接1

[128] Du E, Tang H, Huang K, Tao R. Reducing the viscosity of diesel fuel with electrorheological effect. J Intell Mater Syst Struct 2011;22(15):1713‒6. 链接1

[129] Huang Q, Li H, Zhuang Y, Ding Y, Ma C, Chen C, et al. Reducing viscosity of waxy crude oil with electric field perpendicular to oil’s flow direction. Fuel 2021;283:119345. 链接1

[130] Huang Q, Li H, Xie Y, Ding Y, Zhuang Y, Chen C, et al. Electrorheological behaviors of waxy crude oil gel. J Rheol 2021;65(2):103‒12. 链接1

[131] Li H, Li Z, Xie Y, Guo W, Huang Q, Chen C, et al. Impacts of shear and thermal histories on the stability of waxy crude oil flowability improvement by electric treatments. J Petrol Sci Eng 2021;204:108764. 链接1

[132] Chen C, Zhang J, Xie Y, Huang Q, Ding Y, Zhuang Y, et al. An investigation to the mechanism of the electrorheological behaviors of waxy oils. Chem Eng Sci 2021;239:116646. 链接1

[133] Tao R, Tang H, Tawhid-Al-Islam K, Du E, Kim J. Reply to Smith: electrorheological technology reduces the chocolate viscosity and fat level. Proc Natl Acad Sci USA 2016;113(36):e5255‒6. 链接1

[134] Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 2015;44(21):7484‒539. 链接1

[135] Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 2016;55(7):2521‒5. 链接1

[136] Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, et al. Thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater 2017;29(2):1603755. 链接1

相关研究