期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第25卷 第6期 doi: 10.1016/j.eng.2022.03.004

零相频下离子导体的焦耳加热及其电解反应抑制

a School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
b School of Materials, Sun Yat-sen University, Shenzhen 518107, China

收稿日期: 2021-09-10 修回日期: 2021-10-15 录用日期: 2021-11-01 发布日期: 2022-03-26

下一篇 上一篇

摘要

众所周知,当电流通过电导体时会产生热量。我们日常生活和工业中的各种应用都利用电子导体的加热,但很少有人关注离子导体用于加热的潜力。这是因为“不可避免的”电化学反应会导致不必要的导体电解、电极腐蚀和表面结垢。本文报道了没有电化学反应的离子导体的焦耳加热。采用零相频率的电流来抑制高电压下离子导体的电解。各种离子导体(液体和固体)的演示显示出无电化学反应的高效能量转换。这种加热方法简单、直接、快速、清洁、均匀,在工业和家庭的许多应用中具有巨大潜力。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Wang C, Ping W, Bai Q, Cui H, Hensleigh R, Wang R, et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020;368(6490):521‒6. 链接1

[ 2 ] Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011;10(8):569‒81. 链接1

[ 3 ] An BW, Gwak EJ, Kim K, Kim YC, Jang J, Kim JY, et al. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett 2016;16(1):471‒8. 链接1

[ 4 ] Zhu X, Xu Q, Li H, Liu M, Li Z, Yang K, et al. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer. Adv Mater 2019;31(32):1902479. 链接1

[ 5 ] Dudchenko AV, Chen C, Cardenas A, Rolf J, Jassby D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat Nanotechnol 2017;12(6):557‒63. 链接1

[ 6 ] Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z. Stretchable, transparent, ionic conductors. Science 2013;341(6149):984‒7. 链接1

[ 7 ] Rustomji CS, Yang Y, Kim TK, Mac J, Kim YJ, Caldwell E, et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 2017;356(6345):aal4263. 链接1

[ 8 ] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104(10):4303‒418. 链接1

[ 9 ] Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017;2(4):16103. 链接1

[10] Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 2016;116(1):140‒62. 链接1

[11] Shi L, Zhu T, Gao G, Zhang X, Wei W, Liu W, et al. Highly stretchable and transparent ionic conducting elastomers. Nat Commun 2018;9(1):2630. 链接1

[12] Sakr M, Liu SL. A comprehensive review on applications of Ohmic heating (OH). Renew Sustain Energy Rev 2014;39:262‒9. 链接1

[13] Jaeger H, Roth A, Toepfl S, Holzhauser T, Engel KH, Knorr D, et al. Opinion on the use of Ohmic heating for the treatment of foods. Trends Food Sci Technol 2016;55:84‒97. 链接1

[14] Cappato LP, Ferreira MVS, Guimaraes JT, Portela JB, Costa ALR, Freitas MQ, et al. Ohmic heating in dairy processing: relevant aspects for safety and quality. Trends Food Sci Technol 2017;62:104‒12. 链接1

[15] De Mello AJ, Habgood M, Lancaster NL, Welton T, Wootton RCR. Precise temperature control in microfluidic devices using Joule heating of ionic liquids. Lab Chip 2004;4(5):417‒9. 链接1

[16] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015;350 (6263):938‒43. 链接1

[17] Li JC, Ma C, Chi MF, Liang CD, Dudney NJ. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 2015;5(4):1401408. 链接1

[18] Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun 2016;7(1):12032. 链接1

[19] Read JA, Cresce AV, Ervin MH, Xu K. Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci 2014;7(2):617‒20. 链接1

[20] Li SY, Zhao DN, Wang P, Cui XL, Tang FJ. Electrochemical effect and mechanism of adiponitrile additive for high-voltage electrolyte. Electrochim Acta 2016;222:668‒77. 链接1

[21] Shi L, Jia K, Gao Y, Yang H, Ma Y, Lu S, et al. Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance. Research 2020;2020:2505619. 链接1

[22] Bansal B, Chen XD. Effect of temperature and power frequency on milk fouling in an Ohmic heater. Food Bioprod Process 2006;84(4):286‒91. 链接1

[23] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev 2004;104(10):4245‒70. 链接1

[24] Mei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J Phys Chem C 2018;122(1):194‒206. 链接1

[25] Silva VLM, LMNBFSantos, Silva AMS. Ohmic heating: an emerging concept in organic synthesis. Chemistry 2017;23(33):7853‒65. 链接1

[26] Samaranayake CP, Sastry SK, Zhang H. Pulsed Ohmic heating—a novel technique for minimization of electrochemical reactions during processing. J Food Sci 2005;70(8):e460‒5. 链接1

[27] Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker’s guide to flow chemistry II. Chem Rev 2017;117(18):11796‒893. 链接1

[28] Wegner J, Ceylan S, Kirschning A. Flow chemistry—a key enabling technology for (multistep) organic synthesis. Adv Synth Catal 2012;354(1):17‒57. 链接1

[29] Wiles C, Watts P. Continuous flow reactors: a perspective. Green Chem 2012;14(1):38‒54. 链接1

相关研究