期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2022.03.019

基于信息超表面设计理念的一种平面4比特可重构天线阵列

a State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
b The Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China

收稿日期: 2021-10-11 修回日期: 2022-02-17 录用日期: 2022-03-20 发布日期: 2022-07-16

下一篇 上一篇

摘要

受信息超表面设计理念即数字编码概念的启发,一种具有0.15λ0λ0为波长)低剖面的平面4比特可重构天线阵列被提出。这个阵列是基于由1比特磁电偶极子和小型化反射式移相器组成的数字编码辐射单元组成。通过对两个对称馈电端口单独馈电,所提出的1比特磁电偶极子能够在宽带范围内提供“0”和“1”两种数字状态。所涉及的反射式移相器可以提供173°的相对相移。通过在157.5°的相位范围内进行数字量化,可以进一步得到相移间隔22.5°的8种数字状态。为了实现低副瓣水平,一个基于泰勒线源方法的1:16功分器被用来给阵列馈电。我们加工并测试了所提出的4比特天线阵列样机,实验结果与仿真结果吻合很好。阵列能够实现±45°的扫角,12 GHz的最大增益为13.4 dBi,副瓣和交叉极化水平分别低于–14.3 dB和–23 dB。另外,波束指向误差在0.8°,法向波束的3–dB增益带宽为25%。由于阵列卓越的性能,它在雷达和通信系统中将有重要的应用前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Mailloux RJ. Phased array antenna handbook. 3rd ed. Norwood: Artech House; 2018.

[ 2 ] Stutzman WL, Thiele GA. Antenna theory and design. 3rd ed. Hoboken: John Wiley & Sons, Inc.; 2013.

[ 3 ] Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 2020;1(1):1. 链接1

[ 4 ] Cui TJ, Li L, Liu S, Ma Q, Zhang L, Wan X, et al. Information metamaterial systems. iScience 2020;23(8):101403. 链接1

[ 5 ] Cui TJ, Qi MQ,Wan X, Zhao J, Cheng Q. Codingmetamaterials, digitalmetamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218. 链接1

[ 6 ] Wang ZX, Wu JW, Wu LW, Gou Y, Ma HF, Cheng Q, et al. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv Opt Mater 2021;9(5):2001609. 链接1

[ 7 ] Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018;9(1):4334. 链接1

[ 8 ] Dai JY, Zhao J, Cheng Q, Cui TJ. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl 2018;7(1):90. 链接1

[ 9 ] Ma Q, Bai GD, Jing HB, Yang C, Li L, Cui TJ. Smart metasurface with selfadaptively reprogrammable functions. Light Sci Appl 2019;8(1):98. 链接1

[10] Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8(1):197. 链接1

[11] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082. 链接1

[12] Wu JB, Shen Z, Ge SJ, Chen BW, Shen ZX, Wang TF, et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett 2020;116(13):131104. 链接1

[13] Zhao J, Yang X, Dai JY, Cheng Q, Li X, Qi NH, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev 2019;6(2):231‒8. 链接1

[14] Cui TJ, Liu S, Bai GD, Ma Q. Direct transmission of digital message via programmable coding metasurface. Research 2019;2019:2584509. 链接1

[15] Zhang L, Chen MZ, Tang W, Dai JY, Miao L, Zhou XY, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electron 2021;4(3):218‒27. 链接1

[16] Chen MZ, Tang WK, Dai JY, Ke JC, Zhang L, Zhang C, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl Sci Rev 2022;9(1):nwab134. 链接1

[17] Yang HH, Yang F, Xu SH, Mao YL, Li MK, Cao XY, et al. A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization, and experiment. IEEE Trans Antenn Propag 2016;64(6):2246‒54. 链接1

[18] Yang HH, Yang F, Cao XY, Xu SH, Gao J, Chen XB, et al. A 1600-element dualfrequency electronically reconfigurable reflectarray at X/Ku-band. IEEE Trans Antenn Propag 2017;65(6):3024‒32. 链接1

[19] Di Palma L, Clemente A, Dussopt L, Sauleau R, Potier P, Pouliguen P. Circularlypolarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities. IEEE Trans Antenn Propag 2017;65(2):529‒40. 链接1

[20] Wang M, Xu SH, Yang F, Li MK. Design and measurement of a 1-bit reconfigurable transmitarray with subwavelength H-shaped coupling slot elements. IEEE Trans Antenn Propag 2019;67(5):3500‒4. 链接1

[21] Wang Y, Xu SH, Yang F, Li MK. A novel 1 bit wide-angle beam scanning reconfigurable transmitarray antenna using an equivalent magnetic dipole element. IEEE Trans Antenn Propag 2020;68(7):5691‒5. 链接1

[22] Hu J, Hao ZC, Wang Y. A wideband array antenna with 1-bit digitalcontrollable radiation beams. IEEE Access 2018;6:10858‒66. 链接1

[23] Wang Q, Tian HW, Jiang WX, Chen MZ, Zhang XG, Cui TJ. An ultrawideband and dual-beam scanning array antenna charactered by coding method. IEEE Antennas Wirel Propag Lett 2020;19(12):2211‒5. 链接1

[24] Zhang XG, Jiang WX, Tian HW, Wang ZX, Wang Q, Cui TJ. Pattern-reconfigurable planar array antenna characterized by digital coding method. IEEE Trans Antenn Propag 2020;68(2):1170‒5. 链接1

[25] Chang L, Li Y, Zhang ZJ, Feng ZH. Reconfigurable 2-bit fixed-frequency beam steering array based on microstrip line. IEEE Trans Antenn Propag 2018;66(2):683‒91. 链接1

[26] Liu PQ, Li Y, Zhang ZJ. Circularly polarized 2 bit reconfigurable beam-steering antenna array. IEEE Trans Antenn Propag 2020;68(3):2416‒21. 链接1

[27] Smith M, Guo Y. A comparison of methods for randomizing phase quantization errors in phased arrays. IEEE Trans Antenn Propag 1983;31(6):821‒8. 链接1

[28] Jiang W, Guo YC, Liu TH, Shen WF, Cao W. Comparison of random phasing methods for reducing beam pointing errors in phased array. IEEE Trans Antenn Propag 2003;51(4):782‒7. 链接1

[29] Luk KM, Wong H. A new wideband unidirectional antenna element. Int J Microw Opt Technol 2006;1(1):35‒44.

[30] Luk KM, Wu BQ. The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc IEEE 2012;100(7):2297‒307. 链接1

[31] Balanis CA, editor. Modern antenna handbook. Hoboken: John Wiley & Sons, Inc.; 2008. 链接1

[32] Huang J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans Antenn Propag 1986;34 (9):1113‒24. 链接1

[33] Hall PS, Dahele JS, James JR. Design principles of sequentially fed, wide bandwidth, circularly polarized microstrip antennas. IEE Proc H 1989;136(5):381‒9. 链接1

[34] Hu J, Hao ZC. A compact polarization-reconfigurable and 2-D beam-switchable antenna using the spatial phase shift technique. IEEE Trans Antenn Propag 2018;66(10):4986‒95. 链接1

[35] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118(11):113901. 链接1

[36] Burdin F, Iskandar Z, Podevin F, Ferrari P. Design of compact reflection-type phase shifters with high figure-of-merit. IEEE Trans Microw Theory Tech 2015;63(6):1883‒93. 链接1

[37] Singh A, Mandal MK. Electronically tunable reflection type phase shifters. IEEE Trans Circuits Syst II 2020;67(3):425‒9. 链接1

[38] MADP-000907-14020W [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.‍macom.‍com/products/product-detail/MADP-000907-14020W. 链接1

[39] Discover Simulia [Internet]. Paris: Dassault Systèmes; [cited 2021 Jul 9]. Available from: https://www.cst.com/products/cstmws. 链接1

[40] Sun J, Li A, Luk KM. A high-gain millimeter-wave magnetoelectric dipole array with packaged microstrip line feed network. IEEE Antennas Wirel Propag Lett 2020;19(10):1669‒73. 链接1

[41] MAVR-011020-1411 [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.‍macom.‍com/products/product-detail/MAVR-011020-1411. 链接1

[42] Pozar DM. Microwave engineering. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2012.

相关研究