期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2022.04.020

未来工程中的声学超构材料

a National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
b Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
c Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

收稿日期: 2021-11-28 修回日期: 2022-03-27 录用日期: 2022-04-20 发布日期: 2022-07-28

下一篇 上一篇

摘要

声学超构材料(acoustic metamaterials, AMMs)是一种人工结构材料,可以表现出自然材料所没有的奇异特性,如负的等效体积模量、负的等效质量密度和负的折射率等。这些有趣的物理现象为操纵声波提供了新的手段,引起了广泛的关注。在过去的20 年里,对AMMs的基础研究取得了巨大的成就,这不仅促进了现代声学的发展,同时展现了AMMs在工程应用中的潜力。本文中,我们回顾了AMMs的最新进展,着重展望其在工程领域的应用,特别是在吸声/隔声、声成像、声隐身等领域。此外,我们还概述了工程应用过程中面临的机遇和挑战。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Kinsler LE, Frey AR, Coppens AB, Sanders JV. Fundamentals of acoustics. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2000.

[ 2 ] Schriemer HP, Cowan ML, Page JH, Sheng P, Liu Z, Weitz DA. Energy velocity of diffusing waves in strongly scattering media. Phys Rev Lett 1997;79(17):3166‒9. 链接1

[ 3 ] Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B. Acoustic band structure of periodic elastic composites. Phys Rev Lett 1993;71(13):2022‒5. 链接1

[ 4 ] Sigalas M, Economou EN. Band structure of elastic waves in two dimensional systems. Solid State Commun 1993;86(3):141‒3. 链接1

[ 5 ] Martínez-Sala R, Sancho J, Sánchez JV, Gómez V, Llinares J, Meseguer F. Sound attenuation by sculpture. Nature 1995;378(6554):241. 链接1

[ 6 ] Yang S, Page JH, Liu Z, Cowan ML, Chan CT, Sheng P. Focusing of sound in a 3D phononic crystal. Phys Rev Lett 2004;93(2):024301. 链接1

[ 7 ] Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, et al. Negative-refraction imaging with two-dimensional phononic crystals. Phys Rev B 2005;72(6):064306. 链接1

[ 8 ] Lu MH, Liu XK, Feng L, Li J, Huang CP, Chen YF, et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys Rev Lett 2007;99(17):174301. 链接1

[ 9 ] Qiu C, Liu Z. Acoustic directional radiation and enhancement caused by bandedge states of two-dimensional phononic crystals. Appl Phys Lett 2006;89(6):063106. 链接1

[10] Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, et al. Locally resonant sonic materials. Science 2000;289(5485):1734‒6. 链接1

[11] Ho KM, Cheng CK, Yang Z, Zhang XX, Sheng P. Broadband locally resonant sonic shields. Appl Phys Lett 2003;83(26):5566‒8. 链接1

[12] Sainidou R, Djafari-Rouhani B, Pennec Y, Vasseur JO. Locally resonant phononic crystals made of hollow spheres or cylinders. Phys Rev B 2006;73(2):024302. 链接1

[13] Yang M, Sheng P. Sound absorption structures: from porous media to acoustic metamaterials. Annu Rev Mater Res 2017;47(1):83‒114. 链接1

[14] Farhat M, Enoch S, Guenneau S, Movchan AB. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 2008;101(13):134501. 链接1

[15] Torrent D, Sánchez-Dehesa J. Acoustic cloaking in two dimensions: a feasible approach. New J Phys 2008;10(6):063015. 链接1

[16] Zhang S, Yin L, Fang N. Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett 2009;102(19):194301. 链接1

[17] Li Y, Yu G, Liang B, Zou X, Li G, Cheng S, et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci Rep 2014;4(1):6830. 链接1

[18] Lee SH, Park CM, Seo YM, Kim CK. Reversed Doppler effect in double negative metamaterials. Phys Rev B 2010;81(24):241102. 链接1

[19] Li Y, Jiang X, Liang B, Cheng J, Zhang L. Metascreen-based acoustic passive phased array. Phys Rev Appl 2015;4(2):024003. 链接1

[20] Cheng Y, Zhou C, Yuan BG, Wu DJ, Wei Q, Liu XJ. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater 2015;14(10):1013‒9. 链接1

[21] Xie Y, Wang W, Chen H, Konneker A, Popa BI, Cummer SA. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun 2014;5(1):5553. 链接1

[22] Ge H, Xu XY, Liu L, Xu R, Lin ZK, Yu SY, et al. Observation of acoustic skyrmions. Phys Rev Lett 2021;127(14):144502. 链接1

[23] Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, et al. A tunable soundabsorbing metamaterial based on coiled-up space. J Appl Phys 2018;123(18):185109. 链接1

[24] Song GY, Cheng Q, Huang B, Dong HY, Cui TJ. Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Appl Phys Lett 2016;109(13):131901. 链接1

[25] Liang Z, Li J. Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 2012;108(11):114301. 链接1

[26] Yu SY, Sun XC, Ni X, Wang Q, Yan XJ, He C, et al. Surface phononic graphene. Nat Mater 2016;15(12):1243‒7. 链接1

[27] Torrent D, Sánchez-Dehesa J. Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Phys Rev Lett 2012;108(17):174301. 链接1

[28] Zhang X, Liu Z. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals. Phys Rev Lett 2008;101(26):264303. 链接1

[29] Chen ZG, Wu Y. Tunable topological phononic crystals. Phys Rev Appl 2016;5(5):054021. 链接1

[30] Ni X, He C, Sun XC, Liu X, Lu MH, Feng L, et al. Topologically protected oneway edge mode in networks of acoustic resonators with circulating air flow. New J Phys 2015;17(5):053016. 链接1

[31] Zhang X, Wang HX, Lin ZK, Tian Y, Xie B, Lu MH, et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat Phys 2019;15(6):582‒8. 链接1

[32] Christensen J, Willatzen M, Velasco VR, Lu MH. Parity-time synthetic phononic media. Phys Rev Lett 2016;116(20):207601. 链接1

[33] Zhu X, Ramezani H, Shi C, Zhu J, Zhang X. PT-symmetric acoustics. Phys Rev X 2014;4(3):031042. 链接1

[34] Hu B, Zhang Z, Zhang H, Zheng L, Xiong W, Yue Z, et al. Non-Hermitian topological whispering gallery. Nature 2021;597(7878):655‒9. 链接1

[35] Popa BI, Cummer SA. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 2014;5(1):3398. 链接1

[36] Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 2014;343(6170):516‒9. 链接1

[37] Liao G, Luan C, Wang Z, Liu J, Yao X, Fu J. Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications. Adv Mater Technol 2021;6(5):2000787. 链接1

[38] Zangeneh-Nejad F, Fleury R. Active times for acoustic metamaterials. Rev Phys 2019;4:100031. 链接1

[39] Wu Y, Yang M, Sheng P. Perspective: acoustic metamaterials in transition. J Appl Phys 2018;123(9):090901. 链接1

[40] Ge H, Yang M, Ma C, Lu MH, Chen YF, Fang N, et al. Breaking the barriers: advances in acoustic functional materials. Natl Sci Rev 2018;5(2):159‒82. 链接1

[41] Cummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater 2016;1(3):16001. 链接1

[42] Lu MH, Feng L, Chen YF. Phononic crystals and acoustic metamaterials. Mater Today 2009;12(12):34‒42. 链接1

[43] Muhammad LCW. From photonic crystals to seismic metamaterials: a review via phononic crystals and acoustic metamaterials. Arch Comput Methods Eng 2021;29:1137‒98. 链接1

[44] Kumar S, Lee HP. The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics 2019;1(3):590‒607. 链接1

[45] Liu J, Guo H, Wang T. A review of acoustic metamaterials and phononic crystals. Crystals 2020;10(4):305. 链接1

[46] Kumar S, Lee HP. Recent advances in active acoustic metamaterials. Int J Appl Mech 2019;11(8):1950081. 链接1

[47] Allard J, Atalla N. Propagation of sound in porous media: modelling sound absorbing materials. 2nd ed. Chichester: John Wiley & Sons, Ltd.; 2009. 链接1

[48] Yang Z, Mei J, Yang M, Chan NH, Sheng P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett 2008;101(20):204301. 链接1

[49] Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun 2012;3(1):756. 链接1

[50] Yang M, Li Y, Meng C, Fu C, Mei J, Yang Z, et al. Sound absorption by subwavelength membrane structures: a geometric perspective. CR Mecanique 2015;343(12):635‒44. 链接1

[51] Ma G, Yang M, Xiao S, Yang Z, Sheng P. Acoustic metasurface with hybrid resonances. Nat Mater 2014;13(9):873‒8. 链接1

[52] Yang M, Meng C, Fu C, Li Y, Yang Z, Sheng P. Subwavelength total acoustic absorption with degenerate resonators. Appl Phys Lett 2015;107(10):104104. 链接1

[53] Wei P, Croënne C, Tak Chu S, Li J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl Phys Lett 2014;104(12):121902. 链接1

[54] Yang M, Ma G, Yang Z, Sheng P. Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective. EPJ Appl Metamat 2015;2:10. 链接1

[55] Meng C, Zhang X, Tang ST, Yang M, Yang Z. Acoustic coherent perfect absorbers as sensitive null detectors. Sci Rep 2017;7(1):43574. 链接1

[56] Wang X, Zhao H, Luo X, Huang Z. Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl Phys Lett 2016;108(4):041905. 链接1

[57] Merkel A, Theocharis G, Richoux O, Romero-García V, Pagneux V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl Phys Lett 2015;107(24):244102. 链接1

[58] Richoux O, Achilleos V, Theocharis G, Brouzos I. Subwavelength interferometric control of absorption in three-port acoustic network. Sci Rep 2018;8(1):12328. 链接1

[59] Groby JP, Lagarrigue C, Brouard B, Dazel O, Tournat V, Nennig B. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J Acoust Soc Am 2015;137(1):273‒80. 链接1

[60] Huang S, Fang X, Wang X, Assouar B, Cheng Q, Li Y. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J Acoust Soc Am 2019;145(1):254‒62. 链接1

[61] Jiménez N, Romero-García V, Pagneux V, Groby JP. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys Rev B 2017;95(1):014205. 链接1

[62] Groby JP, Pommier R, Aurégan Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J Acoust Soc Am 2016;139(4):1660‒71. 链接1

[63] Jiang X, Liang B, Li R, Zou X, Yin L, Cheng J. Ultra-broadband absorption by acoustic metamaterials. Appl Phys Lett 2014;105(24):243505. 链接1

[64] Romero-García V, Theocharis G, Richoux O, Pagneux V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J Acoust Soc Am 2016;139(6):3395‒403. 链接1

[65] Kim SR, Kim YH, Jang JH. A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array. J Acoust Soc Am 2006;119(4):1933‒6. 链接1

[66] Liu CR, Wu JH, Chen X, Ma F. A thin low-frequency broadband metasurface with multi-order sound absorption. J Phys D Appl Phys 2019;52(10):105302. 链接1

[67] Shen Y, Yang Y, Guo X, Shen Y, Zhang D. Low-frequency anechoic metasurface based on coiled channel of gradient cross-section. Appl Phys Lett 2019;114(8):083501. 链接1

[68] Zhang C, Hu X. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys Rev Appl 2016;6(6):064025. 链接1

[69] Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Mater Horiz 2017;4(4):673‒80. 链接1

[70] Mak HY, Zhang X, Dong Z, Miura S, Iwata T, Sheng P. Going beyond the causal limit in acoustic absorption. Phys Rev Appl 2021;16(4):044062. 链接1

[71] Sun M, Fang X, Mao D, Wang X, Li Y. Broadband acoustic ventilation barriers. Phys Rev Appl 2020;13(4):044028. 链接1

[72] Leroy V, Strybulevych A, Lanoy M, Lemoult F, Tourin A, Page JH. Superabsorption of acoustic waves with bubble metascreens. Phys Rev B 2015;91(2):020301. 链接1

[73] Ivansson SM. Sound absorption by viscoelastic coatings with periodically distributed cavities. J Acoust Soc Am 2006;119(6):3558‒67. 链接1

[74] Ivansson SM. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. J Acoust Soc Am 2008;124(4):1974‒84. 链接1

[75] Meng H, Wen J, Zhao H, Wen X. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. J Sound Vibrat 2012;331(20):4406‒16. 链接1

[76] Huang Z, Zhao S, Su M, Yang Q, Li Z, Cai Z, et al. Bioinspired patterned bubbles for broad and low-frequency acoustic blocking. ACS Appl Mater Interfaces 2020;12(1):1757‒64. 链接1

[77] Duan M, Yu C, Xin F, Lu TJ. Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: from low-frequency to ultra-broadband. Appl Phys Lett 2021;118(7):071904. 链接1

[78] Zhang Y, Pan J, Chen K, Zhong J. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands. J Acoust Soc Am 2018;144(2):648‒59. 链接1

[79] Shi K, Jin G, Liu R, Ye T, Xue Y. Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers. Results Phys 2019;12:132‒42. 链接1

[80] Naify CJ, Martin TP, Layman CN, Nicholas M, Thangawng AL, Calvo DC, et al. Underwater acoustic omnidirectional absorber. Appl Phys Lett 2014;104(7):073505. 链接1

[81] Wang C, Li SD, Zheng WG, Huang QB. Acoustic absorption characteristics of new underwater omnidirectional absorber. Chin Phys Lett 2019;36 (4):044301. 链接1

[82] Park CM, Park JJ, Lee SH, Seo YM, Kim CK, Lee SH. Amplification of acoustic evanescent waves using metamaterial slabs. Phys Rev Lett 2011;107(19):194301. 链接1

[83] Li J, Fok L, Yin X, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 2009;8(12):931‒4. 链接1

[84] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85(18):3966‒9. 链接1

[85] Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater 2008;7(6):435‒41. 链接1

[86] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308(5721):534‒7. 链接1

[87] Ambati M, Fang N, Sun C, Zhang X. Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 2007;75(19):195447. 链接1

[88] Park JJ, Park CM, Lee KJB, Lee SH. Acoustic superlens using membrane-based metamaterials. Appl Phys Lett 2015;106(5):051901. 链接1

[89] Kaina N, Lemoult F, Fink M, Lerosey G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 2015;525(7567):77‒81. 链接1

[90] Molerón M, Daraio C. Acoustic metamaterial for subwavelength edge detection. Nat Commun 2015;6(1):8037. 链接1

[91] Ao X, Chan CT. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 2008;77(2):025601. 链接1

[92] Christensen J, García de Abajo FJ. Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. Appl Phys Lett 2010;97(16):164103. 链接1

[93] Shen YX, Peng YG, Cai F, Huang K, Zhao DG, Qiu CW, et al. Ultrasonic superoscillation wave-packets with an acoustic meta-lens. Nat Commun 2019;10(1):3411. 链接1

[94] García-Chocano VM, Christensen J, Sánchez-Dehesa J. Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys Rev Lett 2014;112(14):144301. 链接1

[95] Shen C, Xie Y, Sui N, Wang W, Cummer SA, Jing Y. Broadband acoustic hyperbolic metamaterial. Phys Rev Lett 2015;115(25):254301. 链接1

[96] Lemoult F, Fink M, Lerosey G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys Rev Lett 2011;107(6):064301. 链接1

[97] Bai L, Dong HY, Song GY, Cheng Q, Huang B, Jiang WX, et al. Impedancematching wavefront-transformation lens based on acoustic metamaterials. Adv Mater Technol 2018;3(11):1800064. 链接1

[98] Al Jahdali R, Wu Y. High transmission acoustic focusing by impedancematched acoustic meta-surfaces. Appl Phys Lett 2016;108(3):031902. 链接1

[99] Peng S, He Z, Jia H, Zhang A, Qiu C, Ke M, et al. Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Appl Phys Lett 2010;96(26):263502. 链接1

[100] Su X, Norris AN, Cushing CW, Haberman MR, Wilson PS. Broadband focusing of underwater sound using a transparent pentamode lens. J Acoust Soc Am 2017;141(6):4408‒17. 链接1

[101] Chen J, Rao J, Lisevych D, Fan Z. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl Phys Lett 2019;114(10):104101. 链接1

[102] Ruan Y, Liang X, Wang Z, Wang T, Deng Y, Qu F, et al. 3-D underwater acoustic wave focusing by periodic structure. Appl Phys Lett 2019;114(8):081908. 链接1

[103] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314(5801):977‒80. 链接1

[104] Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312(5781):1780‒2. 链接1

[105] Cummer SA, Popa BI, Schurig D, Smith DR, Pendry J, Rahm M, et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys Rev Lett 2008;100(2):024301. 链接1

[106] Chen H, Chan C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 2007;91(18):183518. 链接1

[107] Cummer SA, Schurig D. One path to acoustic cloaking. New J Phys 2007;9(3):45. 链接1

[108] Cheng Y, Yang F, Xu JY, Liu XJ. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl Phys Lett 2008;92(15):151913. 链接1

[109] Popa BI, Zigoneanu L, Cummer SA. Experimental acoustic ground cloak in air. Phys Rev Lett 2011;106(25):253901. 链接1

[110] Zigoneanu L, Popa BI, Cummer SA. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat Mater 2014;13(4):352‒5. 链接1

[111] Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 2011;106(2):024301. 链接1

[112] Li XF, Ni X, Feng L, Lu MH, He C, Chen YF. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys Rev Lett 2011;106(8):084301. 链接1

[113] Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys 2010;82(4):3045‒67. 链接1

[114] Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys 2011;83(4):1057‒110. 链接1

[115] Zhang L, Ren J, Wang JS, Li B. Topological nature of the phonon Hall effect. Phys Rev Lett 2010;105(22):225901. 链接1

[116] Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 2012;84(3):1045‒66. 链接1

[117] Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, et al. Topological acoustics. Phys Rev Lett 2015;114(11):114301. 链接1

[118] Xiao M, Ma G, Yang Z, Sheng P, Zhang ZQ, Chan CT. Geometric phase and band inversion in periodic acoustic systems. Nat Phys 2015;11(3):240‒4. 链接1

[119] He C, Ni X, Ge H, Sun XC, Chen YB, Lu MH, et al. Acoustic topological insulator and robust one-way sound transport. Nat Phys 2016;12(12):1124‒9. 链接1

[120] Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice. Phys Rev Lett 2017;118(8):084303. 链接1

[121] Zhu Z, Yan M, Pan J, Yang Y, Deng W, Lu J, et al. Acoustic valley spin Chern insulators. Phys Rev Appl 2021;16(1):014058. 链接1

[122] Yang Z, Zhang B. Acoustic type-II Weyl nodes from stacking dimerized chains. Phys Rev Lett 2016;117(22):224301. 链接1

[123] Shen C, Xu J, Fang NX, Jing Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys Rev X 2014;4(4):041033. 链接1

[124] Bok E, Park JJ, Choi H, Han CK, Wright OB, Lee SH. Metasurface for water-toair sound transmission. Phys Rev Lett 2018;120(4):044302. 链接1

[125] Huang Z, Zhao S, Zhang Y, Cai Z, Li Z, Xiao J, et al. Tunable fluid-type metasurface for wide-angle and multifrequency water-air acoustic transmission. Research 2021;2021:9757943. 链接1

[126] Huang Z, Zhao Z, Zhao S, Cai X, Zhang Y, Cai Z, et al. Lotus metasurface for wide-angle intermediate-frequency water-air acoustic transmission. ACS Appl Mater Interfaces 2021;13(44):53242‒51. 链接1

[127] Ding Y, Statharas EC, Yao K, Hong M. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl Phys Lett 2017;110(24):241903. 链接1

[128] Li Z, Yang DQ, Liu SL, Yu SY, Lu MH, Zhu J, et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Sci Rep 2017;7(1):42863. 链接1

[129] Liu C, Luo J, Lai Y. Acoustic metamaterials with broadband and wide-angle impedance matching. Phys Rev Mater 2018;2(4):045201. 链接1

[130] Fernández-Marín AA, Jiménez N, Groby JP, Sánchez-Dehesa J, Romero-García V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl Phys Lett 2019;115(6):061901. 链接1

[131] Song K, Kim J, Hur S, Kwak JH, Lee SH, Kim T. Directional reflective surface formed via gradient-impeding acoustic meta-surfaces. Sci Rep 2016;6(1):32300. 链接1

[132] Xie Y, Popa BI, Zigoneanu L, Cummer SA. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys Rev Lett 2013;110(17):175501. 链接1

相关研究