期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第20卷 第1期 doi: 10.1016/j.eng.2022.05.003

基于LiNbO3/SiO2/SiC异质结构实现44 GHz超高频声表面波谐振器

a College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
b Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 30084, China
c CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
d Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

收稿日期: 2021-11-13 修回日期: 2022-03-06 录用日期: 2022-05-05 发布日期: 2022-05-23

下一篇 上一篇

摘要

声表面波(SAW)技术广泛应用于无线通信、传感器、微流体、光子与量子信息通信等领域。然而,受限于制造技术的发展,SAW器件的频率通常在几个吉赫(GHz)以内,严重限制了SAW器件在5G通信、高精度传感、光子与量子控制中的应用。针对上述关键问题,本文提出将极端纳米制造技术与LiNbO3/SiO2/SiC异质结构衬底相结合的策略,成功制备出波长为160 nm的超高频SAW器件,其高阶模态谐振频率高达约44 GHz,获得的机电耦合系数高达15.7%。基于LiNbO3/SiO2/SiC 异质结构衬底的超高频SAW呈现出多种模态,理论仿真分析确定了高阶声波模态的波模态。进行了超高频SAW微质量传感应用研究,其最高质量灵敏度高达33151.9 MHz⋅mm2⋅μg−1,比频率为978 MHz的传统SAW器件质量灵敏度高4000 倍,是传统石英微天平(QCM)器件质量灵敏度的1011倍。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Twodimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 2015;6:8686. 链接1

[ 2 ] Hernández-Mínguez A, Möller M, Breuer S, Pfüller C, Somaschini C, Lazić S, et al. Acoustically driven photon antibunching in nanowires. Nano Lett 2012;12(1):252‒8. 链接1

[ 3 ] Hackett L, Miller M, Brimigion F, Dominguez D, Peake G, Tauke-Pedretti A, et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron‒phonon interactions. Nat Commun 2021;12:2769. 链接1

[ 4 ] Tao R, McHale G, Reboud J, Cooper JM, Torun H, Luo JT, et al. Hierarchical nanotexturing enables acoustofluidics on slippery yet sticky, flexible surfaces. Nano Lett 2020;20(5):3263‒70. 链接1

[ 5 ] Wenzel SW, White RM. Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl Phys Lett 1989;54(20):1976‒8. 链接1

[ 6 ] Satzinger KJ, Zhong YP, Chang HS, Peairs GA, Bienfait A, Chou MH, et al. Quantum control of surface acoustic-wave phonons. Nature 2018;563(7733):661‒5. 链接1

[ 7 ] Munk D, Katzman M, Hen M, Priel M, Feldberg M, Sharabani T, et al. Surface acoustic wave photonic devices in silicon on insulator. Nat Commun 2019;10(1):4214. 链接1

[ 8 ] Chen Y, Shu Z, Zhang S, Zeng P, Liang H, Zheng M, et al. Sub-10 nm fabrication: methods and applications. Int J Extrem Manuf 2021;3(3):032002. 链接1

[ 9 ] Büyükköse S, Vratzov B, Ataç D, van der Veen J, Santos PV, van der Wiel WG. Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si using nanoimprint lithography. Nanotechnology 2012;23(31):315303. 链接1

[10] Mohammad MA, Chen X, Xie QY, Liu B, Conway J, Tian H, et al. Super high frequency lithium niobate surface acoustic wave transducers up to 14 GHz. In: Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM); 2015 Dec 7‒9; Washington, DC, USA. IEEE; 2015. p. 18.6.1‒4. 链接1

[11] Zheng J, Zhou J, Zeng P, Liu Y, Shen Y, Yao W, et al. 30 GHz surface acoustic wave transducers with extremely high mass sensitivity. Appl Phys Lett 2020;116(12):123502. 链接1

[12] Fu S, Wang W, Qian L, Li Q, Lu Z, Shen J, et al. High-frequency surface acoustic wave devices based on ZnO/SiC layered structure. IEEE Electron Device Lett 2019;40(1):103‒6. 链接1

[13] Hashimoto K, Sato S, Teshigahara A, Nakamura T, Kano K. High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(3):637‒42. 链接1

[14] Luo JT, Zeng F, Pan F, Li HF, Niu JB, Jia R, et al. Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl Surf Sci 2010;256(10):3081‒5. 链接1

[15] Rodriguez-Madrid JG, Iriarte GF, Pedros J, Williams OA, Brink D, Calle F. Super-high-frequency SAW resonators on AlN/Diamond. IEEE Electron Device Lett 2012;33(4):495‒7. 链接1

[16] Zhou C, Yang Y, Jin H, Feng B, Dong S, Luo J, et al. Surface acoustic wave resonators based on (002) AlN/Pt/diamond/silicon layered structure. Thin Solid Films 2013;548:425‒8. 链接1

[17] Wang L, Chen S, Zhang J, Zhou J, Yang C, Chen Y, et al. High performance 33.7 GHz surface acoustic wave nanotransducers based on AlScN/diamond/Si layered structures. Appl Phys Lett 2018;113(9):093503. 链接1

[18] Wang L, Chen S, Zhang J, Xiao D, Han K, Ning X, et al. Enhanced performance of 17.7 GHz SAW devices based on AlN/diamond/Si layered structure with embedded nanotransducer. Appl Phys Lett 2017;111(25):253502. 链接1

[19] Zhou H, Zhang S, Li Z, Huang K, Zheng P, Wu J, et al. Surface wave and lamb wave acoustic devices on heterogenous substrate for 5G front-ends. In: Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM); 2020 Dec 12‒18; FranciscoSan, CA, USA. IEEE; 2020. p. 17.6.1‒4. 链接1

[20] Shen J, Fu S, Su R, Xu H, Lu Z, Xu Z, et al. High-performance surface acoustic wave devices using LiNbO3/SiO2/SiC multilayered substrates. IEEE Trans Microw Theory Tech 2021;69(8):3693‒705. 链接1

[21] Kamitani K, Grimsditch M, Nipko JC, Loong CK, Okada M, Kimura I. The elastic constants of silicon carbide: a Brillouin-scattering study of 4H and 6H SiC single crystals. J Appl Phys 1997;82(6):3152‒4. 链接1

[22] Cimalla V, Pezoldt J, Ambacher O. Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J Phys D Appl Phys 2007;40(20):6386. 链接1

[23] Chen Z, Zhou J, Tang H, Liu Y, Shen Y, Yin X, et al. Ultrahigh-frequency surface acoustic wave sensors with giant mass-loading effects on electrodes. ACS Sens 2020;5(6):1657‒64. 链接1

[24] Solal M, Lardat R, Plessky VP, Makkonen T, Salomaa MM. Existence of harmonic metal thickness mode propagation for longitudinal leaky waves. In: Proceedings of 2004 IEEEUltrasonics Symposium; 2004 Aug 23‒27; Montreal, QC, Canada. IEEE; 2004. p. 1207‒12. 链接1

[25] Ma J, Qian L, Wang Y, Li C, Yang B, Tian Y, et al. Theorectical investigation of longitudinal surface acoustic waves in rotated Y-cut LiNbO3/SiC heterostructures. In: Proceedings of 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA); 2021 Apr 16‒19; Zhengzhou, China. IEEE; 2021. p. 570‒4. 链接1

[26] Kaletta UC, Wenger C. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO2/Si (100). Ultrasonics 2014;54(1):291‒5. 链接1

[27] Takagaki Y, Santos PV, Wiebicke E, Brandt O, Schönherr HP, Ploog KH. Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H‒SiC (0001) substrates. Phys Rev B 2002;66(15):155439. 链接1

[28] Feld DA, Parker R, Ruby R, Bradley P, Dong S. After 60 years: a new formula for computing quality factor is warranted. In: Proceedings of 2008 IEEEUltrasonics Symposium; 2008 Nov 2‒5; Beijing, China. IEEE; 2008. p.431‒6. 链接1

[29] Thomas S, Cole M, Villa-López FH, Gardner JW. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens Actuators A 2016;244:138‒45. 链接1

[30] Kadota M, Yoneda T, Fujimoto K, Nakao T, Takata E. Resonator filters using shear horizontal-type leaky surface acoustic wave consisting of heavy-metal electrode and quartz substrate. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51(2):202‒10. 链接1

[31] Ou HC, Zaghloul M. Synchronous one-pole LiNbO3 surface acoustic wave mass sensors. IEEE Electron Device Lett 2010;31(5):518‒20.

[32] Ten ST, Hashim U, Gopinath SCB, Liu WW, Foo KL, Sam ST, et al. Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens Bioelectron 2017;93:146‒54. 链接1

[33] Kuo FY, Wei HL, Yao DJ. PM2.5 detection by cyclone separator combined with SH-SAW sensor. In: Proceedings of 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 Apr 9‒12; Los Angeles, CA, USA. IEEE; 2017. p. 248‒51. 链接1

[34] Ma W, Tang S, Wei Y, Xie G. Simple biosensing method to detect DMMP based on QCM transducer and acetylcholine esterase sensitive film. Micro Nano Lett 2017;12(2):113‒6. 链接1

[35] Huang XH, Pan W, Hu JG, Bai QS. The exploration and confirmation of the maximum mass sensitivity of quartz crystal microbalance. IEEE Trans Ultrason Ferroelectr Freq Control 2018;65(10):1888‒92. 链接1

[36] Pan W, Huang X, Chen Q. Uniformization of mass sensitivity distribution of silver electrode QCM. IEEE Trans Ultrason Ferroelectr Freq Control 2020;67(9):1953‒6. 链接1

相关研究