期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第20卷 第1期 doi: 10.1016/j.eng.2022.05.014

普列克底物蛋白同源物样结构域家族A成员1蛋白——导致代谢疾病的多方面细胞存活因素

Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and the Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada

收稿日期: 2021-12-30 修回日期: 2022-05-20 录用日期: 2022-05-30 发布日期: 2022-07-02

下一篇 上一篇

摘要

普列克底物蛋白同源物样结构域家族A成员1(PHLDA1)是多作用的胞内蛋白,属于进化上保守的普列克底物蛋白同源相关结构域家族。最初,PHLDA1的小鼠同源基因——T 细胞死亡相关51 基因(TDAG51)——因其在T细胞杂交瘤中活化诱导的细胞凋亡中的作用而被发现。近年来,由于PHLDA与肥胖症、脂肪性肝病、糖尿病、动脉硬化和癌症有关,因此受到越来越多的关注。越来越多的证据也证实,PHLDA1在内质网应激信号通路中作为细胞凋亡、自噬和增殖的关键介质发挥作用。本文综述了PHLDA1基因及蛋白调控、定位和功能方面的现有知识。本文重点介绍了PHLDA1促凋亡和抗凋亡,进而导致代谢性疾病的作用。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Mukherjee A, Morales-Scheihing D, Butler PC, Soto C. Type 2 diabetes as a protein misfolding disease. Trends Mol Med 2015;21(7):439‒49. 链接1

[ 2 ] Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988;332(6163):462‒4. 链接1

[ 3 ] Gething MJ, Sambrook J. Protein folding in the cell. Nature 1992;355(6355):33‒45. 链接1

[ 4 ] Ghemrawi R, Battaglia-Hsu SF, Arnold C. Endoplasmic reticulum stress in metabolic disorders. Cells 2018;7(6):63. 链接1

[ 5 ] Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol 2017;12:456‒61. 链接1

[ 6 ] Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases. J Cell Physiol 2016;231(2):288‒94. 链接1

[ 7 ] Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012;197(7):857‒67. 链接1

[ 8 ] Yazıcı D, Sezer H. Insulin resistance, obesity and lipotoxicity. In: Engin A, editor. Advances in experimental medicine and biology. Cham: Springer; 2017. p. 277‒304. 链接1

[ 9 ] Zhang XQ, Xu CF, Yu CH, Chen WX, Li YM. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014;20(7):1768‒76. 链接1

[10] Sun RQ, Wang H, Zeng XY, Chan SM, Li SP, Jo E, et al. IRE1 impairs insulin signaling transduction of fructose-fed mice via JNK independent of excess lipid. Biochim Biophys Acta 2015;1852(1):156‒65. 链接1

[11] Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol 2012;227(3):1130‒7. 链接1

[12] Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2012;2(1):799. 链接1

[13] Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 2007;116(11):1226‒33. 链接1

[14] Cominacini L, Garbin U, Mozzini C, Stranieri C, Pasini A, Solani E, et al. The atherosclerotic plaque vulnerability: focus on the oxidative and endoplasmic reticulum stress in orchestrating the macrophage apoptosis in the formation of the necrotic core. Curr Med Chem 2015;22(13):1565‒72. 链接1

[15] Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME, et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 2009;15(12):1383‒91. 链接1

[16] Huang A, Young TL, Dang VT, Shi Y, McAlpine CS, Werstuck GH. 4- phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques. Atherosclerosis 2017;266:103‒12. 链接1

[17] Park CG, Lee SY, Kandala G, Lee SY, Choi Y. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 1996;4(6):583‒91. 链接1

[18] Frank D, Mendelsohn CL, Ciccone E, Svensson K, Ohlsson R, Tycko B. A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mamm Genome 1999;10(12):1150‒9. 链接1

[19] Kuske MDA, Johnson JP. Assignment of the human PHLDA1 gene to chromosome 12q15 by radiation hybrid mapping. Cytogenet Cell Genet 2000;89(1‒2):1.

[20] Meier-Noorden M, Flindt S, Kalinke U, Hinz T. A CpG-rich bidirectional promoter induces the T-cell death-associated gene 51 and downregulates an inversely oriented transcript during early T-cell activation. Gene 2004;338(2):197‒207. 链接1

[21] Shi Z, Zhao C, Long W, Ding H, Shen R. Microarray expression profile analysis of long non-coding RNAs in umbilical cord plasma reveals their potential role in gestational diabetes-induced macrosomia. Cell Physiol Biochem 2015;36 (2):542‒54. 链接1

[22] Wu D, Yang N, Xu Y, Wang S, Zhang Y, Sagnelli M, et al. lncRNA HIF1A antisense RNA 2 modulates trophoblast cell invasion and proliferation through upregulating PHLDA1 expression. Mol Ther Nucleic Acids 2019;16:605‒15. 链接1

[23] Wang L, Shen J, Jiang Y. Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1. Cell Biosci 2018;8(1):58. 链接1

[24] Liu L, Shi Y, Shi J, Wang H, Sheng Y, Jiang Q, et al. The long non-coding RNA SNHG1 promotes glioma progression by competitively binding to miR-194 to regulate PHLDA1 expression. Cell Death Dis 2019;10(6):463. 链接1

[25] Gomes I, Xiong W, Miki T, Rosner MR. A proline- and glutamine-rich protein promotes apoptosis in neuronal cells. J Neurochem 1999;73(2):612‒22. 链接1

[26] Lemmon MA. Pleckstrin homology domains: two halves make a hole? Cell 2005;120(5):574‒6. 链接1

[27] Cai J, Lan Y, Appel LF, Weir M. Dissection of the Drosophila paired protein: functional requirements for conserved motifs. Mech Dev 1994;47(2):139‒50. 链接1

[28] Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E, et al. A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 2006;25(20):4773‒83. 链接1

[29] Totzeck F, Andrade-Navarro MA, Mier P. The protein structure context of polyQ regions. PLoS One 2017;12(1):e0170801. 链接1

[30] Lemmon MA, Ferguson KM. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 2000;350(Pt 1):1‒18. 链接1

[31] Yan J, Wen W, Xu W, Long JF, Adams ME, Froehner SC, et al. Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of a-syntrophin. EMBO J 2005;24(23):3985‒95. 链接1

[32] Wen W, Liu W, Yan J, Zhang M. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J Biol Chem 2008;283(38):26263‒73. 链接1

[33] Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P, et al. Rac regulates its effector phospholipase Cc2 through interaction with a split pleckstrin homology domain. J Biol Chem 2008;283(44):30351‒62. 链接1

[34] Fuselier TT, Lu H. PHLD class proteins: a family of new players in the p53 network. Int J Mol Sci 2020;21(10):3543. 链接1

[35] Chen Y, Takikawa M, Tsutsumi S, Yamaguchi Y, Okabe A, Shimada M, et al. PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci 2018;109(11):3532‒42. 链接1

[36] Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, et al. PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell 2009;136(3):535‒50. 链接1

[37] Saxena A, Morozov P, Frank D, Musalo R, Lemmon MA, Skolnik EY, et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1. J Biol Chem 2002;277(51):49935‒44. 链接1

[38] Maffucci T, Falasca M. Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Lett 2001;506(3):173‒9. 链接1

[39] Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4(3):363‒71. 链接1

[40] Ahn JY, Ye K. PIKE GTPase signaling and function. Int J Biol Sci 2005;1(2):44‒50.

[41] Yan J, Wen W, Chan LN, Zhang M. Split pleckstrin homology domainmediated cytoplasmic-nuclear localization of PI3-kinase enhancer GTPase. J Mol Biol 2008;378(2):425‒35. 链接1

[42] Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem 2003;278 (32):30317‒27. 链接1

[43] Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 2006;116(1):249‒60. 链接1

[44] Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010;28(12):1248‒50. 链接1

[45] Basseri S, Lhoták Š, Fullerton MD, Palanivel R, Jiang H, Lynn EG, et al. Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 2013;62(1):158‒69. 链接1

[46] Nagai MA. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer. Biomed Rep 2016;4(3):275‒81. 链接1

[47] Chiu ST, Hsieh FJ, Chen SW, Chen CL, Shu HF, Li H. Clinicopathologic correlation of up-regulated genes identified using cDNA microarray and realtime reverse transcription-PCR in human colorectal cancer. Cancer Epidemiol Biomarkers Prev 2005;14(2):437‒43. 链接1

[48] Sakthianandeswaren A, Christie M, D’Andreti C, Tsui C, Jorissen RN, Li S, et al. PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis. Cancer Res 2011;71(10):3709‒19. 链接1

[49] Segditsas S, Sieber O, Deheragoda M, East P, Rowan A, Jeffery R, et al. Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet 2008;17(24):3864‒75. 链接1

[50] Fearon AE, Carter EP, Clayton NS, Wilkes EH, Baker AM, Kapitonova E, et al. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep 2018;22(9):2469‒81. 链接1

[51] Neef R, Kuske MA, Pröls E, Johnson JP. Identification of the human PHLDA1/ TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res 2002;62 (20):5920‒9.

[52] Hinz T, Flindt S, Marx A, Janssen O, Kabelitz D. Inhibition of protein synthesis by the T cell receptor-inducible human TDAG51 gene product. Cell Signal 2001;13(5):345‒52. 链接1

[53] Dickhout JG, Hossain GS, Pozza LM, Zhou J, Lhoták S, Austin RC. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler Thromb Vasc Biol 2005;25(12):2623‒9. 链接1

[54] Hossain GS, Lynn EG, Maclean KN, Zhou Ji, Dickhout JG, Lhoták Š, et al. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J Am Heart Assoc 2013;2(3):e000134. 链接1

[55] Carlisle RE, Heffernan A, Brimble E, Liu L, Jerome D, Collins CA, et al. TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium. Am J Physiol Renal Physiol 2012;303(3):F467‒81. 链接1

[56] Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res 2007;67(16):7929‒36. 链接1

[57] Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999;397(6716):271‒4. 链接1

[58] Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, et al. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 2002;12(15):1279‒86. 链接1

[59] Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998;273(23):14484‒94. 链接1

[60] Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2a. Mol Cell Biol 2002;22(21):7405‒16. 链接1

[61] Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 2006;21(4):521‒31. 链接1

[62] Owen CR, Kumar R, Zhang P, McGrath BC, Cavener DR, Krause GS. PERK is responsible for the increased phosphorylation of eIF2a and the severe inhibition of protein synthesis after transient global brain ischemia. J Neurochem 2005;94(5):1235‒42. 链接1

[63] Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001;7(6):1165‒76. 链接1

[64] Carlisle RE, Mohammed-Ali Z, Lu C, Yousof T, Tat V, Nademi S, et al. TDAG51 induces renal interstitial fibrosis through modulation of TGF-b receptor 1 in chronic kidney disease. Cell Death Dis 2021;12(10):921. 链接1

[65] Rho J, Gong S, Kim N, Choi Y. TDAG51 is not essential for Fas/CD95 regulation and apoptosis in vivo. Mol Cell Biol 2002;22(4):1276. 链接1

[66] Oberg HH, Sipos B, Kalthoff H, Janssen O, Kabelitz D. Regulation of T-cell death-associated gene 51 (TDAG51) expression in human T-cells. Cell Death Differ 2004;11(6):674‒84. 链接1

[67] Liu F, Xu ZL, Qian XJ, Qiu WY, Huang H. Expression of Hsf1, Hsf2, and Phlda1 in cells undergoing cryptorchid-induced apoptosis in rat testes. Mol Reprod Dev 2011;78(4):283‒91. 链接1

[68] Toyoshima Y, Karas M, Yakar S, Dupont J, Helman L, LeRoith D. TDAG51 mediates the effects of insulin-like growth factor I (IGF-I) on cell survival. J Biol Chem 2004;279(24):25898‒904. 链接1

[69] Park ES, Kim J, Ha TU, Choi JS, Soo Hong K, Rho J. TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts. Exp Mol Med 2013;45(8):e35. 链接1

[70] Murata T, Sato T, Kamoda T, Moriyama H, Kumazawa Y, Hanada N. Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: role of PHLDA1 as an apoptosis suppressor. Exp Cell Res 2014;320(2):247‒57. 链接1

[71] Sohn EJ, Li H, Reidy K, Beers LF, Christensen BL, Lee SB. EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res 2010;70(3):1154‒63. 链接1

[72] Boro A, Prêtre K, Rechfeld F, Thalhammer V, Oesch S, Wachtel M, et al. Smallmolecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing’s sarcoma. Int J Cancer 2012;131(9):2153‒64. 链接1

[73] Moad AIH, Muhammad TS, Oon CE, Tan ML. Rapamycin induces apoptosis when autophagy is inhibited in T-47D mammary cells and both processes are regulated by Phlda1. Cell Biochem Biophys 2013;66(3):567‒87. 链接1

[74] Durbas M, Pabisz P, Wawak K, Wis´niewska A, Boratyn E, Nowak I, et al. GD2 ganglioside-binding antibody 14G2a and specific aurora A kinase inhibitor MK-5108 induce autophagy in IMR-32 neuroblastoma cells. Apoptosis 2018;23(9‒10):492‒511.

[75] Li G, Wang X, Hibshoosh H, Jin C, Halmos B. Modulation of ErbB2 blockade in ErbB2-positive cancers: the role of ErbB2 mutations and PHLDA1. PLoS One 2014;9(9):e106349. 链接1

[76] Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147(4):728‒41. 链接1

[77] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132(1):27‒42. 链接1

[78] Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008;57(9):2438‒44. 链接1

[79] Font-Clos F, Zapperi S, La Porta CAM. Integrative analysis of pathway deregulation in obesity. NPJ Syst Biol Appl 2017;3:1‒10. 链接1

[80] Qiu J, Ni YH, Chen RH, Ji CB, Liu F, Zhang CM, et al. Gene expression profiles of adipose tissue of obese rats after central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides by cDNA microarrays. Peptides 2008;29(11):2052‒60. 链接1

[81] Burton GR, Nagarajan R, Peterson CA, McGehee Jr RE. Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 2004;329:167‒85. 链接1

[82] Kim S, Lee N, Park E-S, Yun H, Ha TU, Jeon H, et al. T-cell death associated gene 51 is a novel negative regulator of PPARc that inhibits PPARc‒RXRa heterodimer formation in adipogenesis. Mol Cells 2021;44(1):1‒12. 链接1

[83] Henry NG, Paul RM. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J CardioMetab Syndr 2009;4 (2):113‒9. 链接1

[84] Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016;73(10):1969‒87. 链接1

[85] Zhang P, Chu T, Dedousis N, Mantell BS, Sipula I, Li L, et al. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Mol Metab 2017;6(4):327‒39. 链接1

[86] Liao S, He He, Zeng Y, Yang L, Liu Z, An Z, et al. A nomogram for predicting metabolic steatohepatitis: the combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. Open Med 2021;16(1):773‒85. 链接1

[87] Han CY, Lim SW, Koo JH, Kim W, Kim SG. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1‍‒‍XBP1s pathway expedites liver injury. Gut 2016;65(8):1377‒88. 链接1

[88] Budi EH, Hoffman S, Gao S, Zhang YE, Derynck R. Integration of TGF-b-induced Smad signaling in the insulin-induced transcriptional response in endothelial cells. Sci Rep 2019;9(1):16992. 链接1

[89] Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Atherosclerosis Nat Rev Dis Primers 2019;5(1):56. 链接1

[90] Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013;13(10):709‒21. 链接1

[91] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011;145(3):341‒55. 链接1

[92] Watson MG, Byrne HM, Macaskill C, Myerscough MR. A two-phase model of early fibrous cap formation in atherosclerosis. J Theor Biol 2018;456:123‒36. 链接1

[93] Trion A, van der Laarse A. Vascular smooth muscle cells and calcification in atherosclerosis. Am Heart J 2004;147(5):808‒14. 链接1

[94] Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 2008;117(22):2938‒48. 链接1

[95] Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 2006;103(40):14678‒83. 链接1

[96] Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103(8):1051‒6. 链接1

[97] Oliver Jr WR, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 2001;98(9):5306‒11. 链接1

[98] Jiao HW, Jia XX, Zhao TJ, Rong H, Zhang JN, Cheng Y, et al. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacol Immunotoxicol 2016;38(2):124‒30. 链接1

[99] Wang S, Zhang H, Wang An, Huang D, Fan J, Lu Lu, et al. PHLDA1 promotes lung contusion by regulating the Toll-like receptor 2 signaling pathway. Cell Physiol Biochem 2016;40(5):1198‒206. 链接1

[100] Platko K, Lebeau PF, Gyulay G, Lhoták Š, MacDonald ME, Pacher G, et al. TDAG51 (T-cell death-associated gene 51) is a key modulator of vascular calcification and osteogenic transdifferentiation of arterial smooth muscle cells. Arterioscler Thromb Vasc Biol 2020;40(7):1664‒79. 链接1

相关研究