期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.06.017

静电力驱动的悬臂梁微型电场传感器件

a State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
b China Southern Power Grid, Guangzhou 510623, China

收稿日期: 2021-10-13 修回日期: 2022-05-22 录用日期: 2022-06-20 发布日期: 2022-08-06

下一篇 上一篇

摘要

随着智能电网和能源互联网的发展,大规模实时电压/电场监测成为电力系统的迫切需求,这依赖于先进传感器件的大规模布置。电场测量在电力系统中具有重要意义。一方面,基于电场测量的电压反演可以实现高电压的非接触式测量,替代传统高压互感器,从而减少测量设备绝缘成本和安装难度;另一方面,电场测量还可以被应用于设备故障诊断、雷电预警、电磁环境测量等应用场景。传统的电场测量设备,如场磨等,往往体积大、成本高,无法大规模灵活布置。本文提出了一种静电力驱动的压阻式微型电场传感器。传感器被设计为四悬臂结构,悬臂在静电力的驱动下产生位移和应变,通过压阻材料转化为可测信
号。所提出的传感器具有尺寸小、成本低、功耗低、易于批量生产的优点。同时,该传感器还具有高信噪比、高分辨率及宽电场测量范围的特点。实验结果表明,所提出的传感器具有1.1~1100.0 kV·m−1的线性测量范围、112 V·m−1·Hz−1/2的交流电场分辨率以及496 Hz的截止频率。这一微型电场传感器将在智能电网及能源互联网中具有广泛的应用价值。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Huang Q, Crow ML, Heydt GT, Zheng JP, Dale SJ. The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proc IEEE 2011;99(1):133‒48. 链接1

[ 2 ] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 2013;29(7):1645‒60. 链接1

[ 3 ] Wu D, Zhou C. Fault-tolerant and scalable key management for smart grid. IEEE Trans Smart Grid 2011;2(2):375‒81. 链接1

[ 4 ] Chen K, Huang C, He J. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High Voltage 2016;1(1):25‒33. 链接1

[ 5 ] Si D, Wang J, Wei G, Yan X. Method and experimental study of voltage measurement based on electric field integral with Gauss‒Legendre algorithm. IEEE Trans Instrum Meas 2020;69(6):2771‒8. 链接1

[ 6 ] Zhang B, Hao Z, Bo Z. Development of relay protection for smart grid (1): new principle of fault distinction. Electr Power Autom Equip 2010;30(1):1‒6. Chinese.

[ 7 ] Yang P, Wen X, Chu Z, Ni X, Peng C. Non-intrusive DC voltage measurement based on resonant electric field microsensors. J Micromech Microeng 2021;31(6):064001. 链接1

[ 8 ] Zhu J, Lei X, Su Z, Liu T, Liu K, Yu G, et al. Study of non-contact voltage detector of 1000kV UHV AC based on MEMS electric field sensor. MATEC Web Conf 2018;160:02001. 链接1

[ 9 ] Duan L, Hu J, Zhao G, Chen K, Wang SX, He J. Method of inter-turn fault detection for next-generation smart transformers based on deep learning algorithm. High Voltage 2019;4(4):282‒91. 链接1

[10] Chen W, Wang J, Wan F, Wang P. Review of optical fibre sensors for electrical equipment characteristic state parameters detection. High Voltage 2019;4(4):271‒81. 链接1

[11] Nitsch M, Camp M, Sabath F, terHaseborg JL, Garbe H. Susceptibility of some electronic equipment to HPEM threats. IEEE Trans Electromagn Compat 2004;46(3):380‒9. 链接1

[12] Han Z, Xue F, Hu J, He J. Micro electric-field sensors: principles and applications. IEEE Ind Electron Mag 2021;15(4):35‒42. 链接1

[13] Zeng S, Powers JR, Newbraugh BH. Effectiveness of a worker-worn electric-field sensor to detect power-line proximity and electrical-contact. J Safety Res 2010;41(3):229‒39. 链接1

[14] Yang P, Chen B, Wen X, Peng C, Xia S, Hao Y. A novel MEMS chip-based ground atmospheric electric field sensor. J Electron Inf Technol 2016;38(6):1536‒40. Chinese.

[15] Yang P, Chen B, Wen X, et al. A novel MEMS chip-based atmospheric electric field sensor for lightning hazard warning applications. In: 2015 IEEE SENSORS; 2015 Nov 1‒4; Busan, Korea. Berlin: IEEE Xplore; 2015. 链接1

[16] Mohammed R, Sabu S, Joby NE, et al. Electric field sensor for lightning early warning system. In: AGU 2017 MeetingFall; 2017 Dec 11‒15; New Orleans, LA, USA; 2017.

[17] Xu B, He H, Yang X, Bie Y, Lv Q. The study of meteorological effects and time variations of the fair weather atmospheric electric field near ground in YBJ, Tibet. Acta Physica Sinica 2012;61(17):175203. Chinese. 链接1

[18] Kasaba Y, Hayakawa H, Ishisaka K, Okada T, Matsuoka A, Mukai T, et al. Evaluation of DC electric field measurement by the double probe system aboard the Geotail spacecraft. Adv Space Res 2006;37(3):604‒9. 链接1

[19] Tajima K, Kobayashi R, Kuwabara N, Tokuda M. Development of optical isotropic E-field sensor operating more than 10 GHz using Mach-Zehnder interferometers. IEICE Trans Electron 2002;85(4):961‒8.

[20] Zeng R, Chen W, He J, Zhu P. The development of integrated electro-optic sensor for intensive electric field measurement. In: 2007 IEEEInternational Symposium on Electromagnetic Compatibility; 2007 Jul 9‒13; Honolulu, HI, USA. Berlin: IEEE Xplore; 2007. 链接1

[21] Zeng R, Wang B, Yu Z, Niu B, Hua Y, et al. Integrated optical E-field sensor based on balanced Mach-Zehnder interferometer. Opt Eng 2011;50(11):114404.

[22] Zeng R, Yu J, Wang B, Niu B, Hua Y. Study of an integrated optical sensor with mono-shielding electrode for intense transient E-field measurement. Measurement 2014;50:356‒62. 链接1

[23] Wu Z, Lin Y, Han S, Yin X, Ding M, Guo L, et al. Simulation and analysis of micro-ring electric field sensor based on a lithium niobate-on-insulator. Crystals (Basel) 2021;11(4):359. 链接1

[24] Riehl PS, Scott KL, Muller RS, Howe RT, Yasaitis JA. Electrostatic charge and field sensors based on micromechanical resonators. J Microelectromech Syst 2003;12(5):577‒89. 链接1

[25] Peng C, Chen X, Ye C, Tao H, Cui G, Bai Q, et al. Design and testing of a micromechanical resonant electrostatic field sensor. J Micromech Microeng 2006;16(5):914‒9. 链接1

[26] Bahreyni B, Wijeweera G, Shafai C, Rajapakse A. Analysis and design of a micromachined electric-field sensor. J Microelectromech Syst 2008;17(1):31‒6. 链接1

[27] Ma Q, Huang K, Yu Z, Wang Z. A MEMS-based electric field sensor for measurement of high-voltage DC synthetic fields in air. IEEE Sens J 2017;17(23):7866‒76. 链接1

[28] Han Z, Xue F, Yang J, Hu J, He J. Micro piezoelectric-capacitive sensors for high-sensitivity measurement of space electric fields. In: 2019 IEEESENSORS; 2019 Oct 27‒30; Montreal, Canada. Berlin: IEEE Xplore; 2019. 链接1

[29] Han Z, Xue F, Yang G, Yu Z, Hu J, He J. Micro-cantilever capacitive sensor for high-resolution measurement of electric fields. IEEE Sens J 2021;21(4):4317‒24. 链接1

[30] Xue F, Hu J, Guo Y, Han G, Ouyang Y, Wang SX, et al. Piezoelectric‒piezoresistive coupling MEMS Sensors for measurement of electric fields of broad bandwidth and large dynamic range. IEEE Trans Ind Electron 2020;67(1):551‒9. 链接1

[31] Xue F, Hu J, Wang SX, He J. Electric field sensor based on piezoelectric bending effect for wide range measurement. IEEE Trans Ind Electron 2015;62(9):5730‒7. 链接1

相关研究