期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2022.06.022

电池安全——从锂离子电池到固态电池

a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

收稿日期: 2022-04-01 修回日期: 2022-05-27 录用日期: 2022-06-07 发布日期: 2022-08-30

下一篇 上一篇

图片

图1

图2

图3

图4

参考文献

[ 1 ] Federal Consortium for Advanced Batteries. National blueprint for lithium batteries 2021‒2030. Washington, DC: Federal Consortium for Advanced Batteries; 2021.

[ 2 ] Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4(4):743‒70. 链接1

[ 3 ] Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solidstate electrolytes. Nat Rev Mater 2017;2(4):16103. 链接1

[ 4 ] Kim MJ, Choi IH, Jo SC, Kim BG, Ha YC, Lee SM, et al. A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes. Small Methods 2021;5(11):2100793. 链接1

[ 5 ] Clement B, Lyu M, Kulkarni ES, Lin T, Hu Y, Lockett V, et al. Recent advances in printed thin-film batteries. Engineering 2022;13:238‒61. 链接1

[ 6 ] Li Y, Gao Z, Hu F, Lin X, Wei Y, Peng J, et al. Advanced characterization techniques for interface in all-solid-state batteries. Small Methods 2020;4(9):2000111. 链接1

[ 7 ] Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of Li-ion cells and components. J Electrochem Soc 1999;146(9):3224‒9. 链接1

[ 8 ] Wang H, Du Z, Rui X, Wang S, Jin C, He L, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level. J Hazard Mater 2020;393:122361. 链接1

[ 9 ] Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 2018;10:246‒67. 链接1

[10] Yao L, Wang ZP, Ma J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles. J Power Sources 2015;293:548‒61. 链接1

[11] Abraham DP, Roth EP, Kostecki R, McCarthy K, MacLaren S, Doughty DH. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources 2006;161(1):648‒57. 链接1

[12] Jin Y, Zheng Z, Wei D, Jiang X, Lu H, Sun L, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning. Joule 2020;4(8):1714‒29. 链接1

[13] Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solidstate batteries. Chem Mater 2016;28(1):266‒73. 链接1

[14] Wang Y, Zhang Q, Xue ZC, Yang L, Wang J, Meng F, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater 2020;10(28):2001413. 链接1

[15] Chen R, Nolan AM, Lu J, Wang J, Yu X, Mo Y, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020;4(4):812‒21. 链接1

[16] Wang J, Chen R, Yang L, Zan M, Chen P, Li Y, et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes. Adv Mater 2022;34(19):2200655. 链接1

[17] Li Y, Feng X, Ren D, Ouyang M, Lu L, Han X. Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl Mater Interfaces 2019;11(50):46839‒50. 链接1

[18] Jung KN, Shin HS, Park MS, Lee JW. Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry. ChemElectroChem 2019;6(15):3842‒59. 链接1

相关研究