期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.07.022

用于气体分离的含多孔材料的混合基质膜——从金属有机框架到离散分子笼

a Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore

b Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China

收稿日期: 2021-12-30 修回日期: 2022-05-19 录用日期: 2022-07-03 发布日期: 2023-03-08

下一篇 上一篇

摘要

混合基质膜(MMMs)将多孔材料与聚合物基质结合,因二者的互补性和协同作用,MMMs在气体分离研究领域得到了广泛关注。多孔材料的可调节性和多样性赋予了MMMs可扩展的功能和优异的分离性能。为了充分发挥MMMs的潜力,研究人员专注于多孔填料与聚合物基质的合理匹配,以提高MMMs的
界面相容性。在本文中,我们重点介绍了利用不同策略,将金属有机框架(MOFs)或金属有机笼(MOCs)与聚合物基质相结合,以制备MMMs的最新进展,并且进一步讨论了MMMs未来发展所面临的机遇和挑战,这将通过合理的材料设计和选择促进MMMs的发展。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Koros WJ, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nat Mater 2017;16(3):289‒97. 链接1

[ 2 ] Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Control 2013;12:84‒107. 链接1

[ 3 ] Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Ind Eng Chem Res 2009;48(10):4638‒63. 链接1

[ 4 ] Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Membr Sci 2010;359(1‒2):115‒25.

[ 5 ] Baker RW, Low BT. Gas separation membrane materials: a perspective. Macromolecules 2014;47(20):6999‒7013. 链接1

[ 6 ] Dechnik J, Sumby CJ, Janiak C. Enhancing mixed-matrix membrane performance with metal‒organic framework additives. Cryst Growth Des 2017;17(8):4467‒88. 链接1

[ 7 ] Wang S, Li X, Wu H, Tian Z, Xin Q, He G, et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci 2016;9(6):1863‒90. 链接1

[ 8 ] Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J Petrol Sci Eng 2012;94‒95:123‒54. 链接1

[ 9 ] Lokhandwala KA, Pinnau I, He Z, Amo KD, DaCosta AR, Wijmans JG, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment. J Membr Sci 2010;346(2):270‒9. 链接1

[10] Hosseini SS, Chung TS. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 2009;328(1‒2):174‒85. 链接1

[11] Xie K, Fu Q, Qiao GG, Webley PA. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J Membr Sci 2019;572:38‒60. 链接1

[12] Venna SR, Carreon MA. Metal organic framework membranes for carbon dioxide separation. Chem Eng Sci 2015;124:3‒19. 链接1

[13] Lin R, Villacorta Hernandez B, Ge L, Zhu Z. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J Mater Chem A 2018;6(2):293‒312. 链接1

[14] Liang CZ, Chung TS, Lai JY. A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 2019;97:101141. 链接1

[15] Li W. Metal‒organic framework membranes: production, modification, and applications. Prog Mater Sci 2019;100:21‒63. 链接1

[16] Ying Y, Tong M, Ning S, Ravi SK, Peh SB, Tan SC, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J Am Chem Soc 2020;142(9):4472‒80. 链接1

[17] Ying Y, Peh SB, Yang H, Yang Z, Zhao D. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Adv Mater 2022;34(25):e2104946. 链接1

[18] Ying Y, Zhang Z, Peh SB, Karmakar A, Cheng Y, Zhang J, et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation. Angew Chem Int Ed Engl 2021;60(20):11318‒25. 链接1

[19] Wang X, Chi C, Zhang K, Qian Y, Gupta KM, Kang Z, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun 2017;8(1):14460. 链接1

[20] Sandru M, Sandru EM, Ingram WF, Deng J, Stenstad PM, Deng L, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 2022;376(6588):90‒4. 链接1

[21] Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 1991;62(2):165‒85. 链接1

[22] Robeson LM. The upper bound revisited. J Membr Sci 2008;320(1-2):390‒400. 链接1

[23] Comesaña-Gándara B, Chen J, Bezzu CG, Carta M, Rose I, Ferrari MC, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ Sci 2019;12(9):2733‒40. 链接1

[24] Pastore VJ, Cook TR. Coordination-driven self-assembly in polymer-inorganic hybrid materials. Chem Mater 2020;32(9):3680‒700. 链接1

[25] Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-matrix membranes. Angew Chem Int Ed Engl 2017;56(32):9292‒310. 链接1

[26] Cheng Y, Ying Y, Japip S, Jiang SD, Chung TS, Zhang S, et al. Advanced porous materials in mixed matrix membranes. Adv Mater 2018;30(47):1802401. 链接1

[27] Guo X, Qiao Z, Liu D, Zhong C. Mixed-matrix membranes for CO2 separation: role of the third component. J Mater Chem A 2019;7(43):24738‒59. 链接1

[28] Muthukumaraswamy Rangaraj V, Wahab MA, Reddy KSK, Kakosimos G, Abdalla O, Favvas EP, et al. Metal organic framework-based mixed matrix membranes for carbon dioxide separation: recent advances and future directions. Front Chem 2020;8:534. 链接1

[29] Hossain I, Husna A, Chaemchuen S, Verpoort F, Kim TH. Cross-linked mixedmatrix membranes using functionalized UiO-66-NH2 into PEG/PPG‒PDMSbased rubbery polymer for efficient CO2 separation. ACS Appl Mater Interfaces 2020;12(52):57916‒31. 链接1

[30] Li C, Wu C, Zhang B. Enhanced CO2/CH4 separation performances of mixed matrix membranes incorporated with two-dimensional Ni-based MOF nanosheets. ACS Sustain Chem Eng 2020;8(1):642‒8. 链接1

[31] Semino R, Moreton JC, Ramsahye NA, Cohen SM, Maurin G. Understanding the origins of metal‒organic framework/polymer compatibility. Chem Sci 2018;9(2):315‒24. 链接1

[32] Nordin NAHM, Ismail AF, Mustafa A, Murali RS, Matsuura T. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Adv 2014;4(94):52530‒41. 链接1

[33] Cheng Y, Wang Z, Zhao D. Mixed matrix membranes for natural gas upgrading: current status and opportunities. Ind Eng Chem Res 2018;57(12):4139‒69. 链接1

[34] Wang B, Sheng M, Xu J, Zhao S, Wang J, Wang Z. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation. Small Methods 2020;4(3):1900749. 链接1

[35] Zhu X, Tian C, Do-Thanh CL, Dai S. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 2017;10(17):3304‒16. 链接1

[36] Zhu G, O’Nolan D, Lively RP. Molecularly mixed composite membranes: challenges and opportunities. Chemistry Eur J 2020;26(16):3464‒73. 链接1

[37] Bushell AF, Budd PM, Attfield MP, Jones JTA, Hasell T, Cooper AI, et al. Nanoporous organic polymer/cage composite membranes. Angew Chem Int Ed Engl 2013;52(4):1253‒6. 链接1

[38] Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016;45(8):2327‒67. 链接1

[39] Zhou HC, Long JR, Yaghi OM. Introduction to metal‒organic frameworks. Chem Rev 2012;112(2):673‒4. 链接1

[40] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341(6149):1230444. 链接1

[41] Askari M, Chung TS. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J Membr Sci 2013;444:173‒83. 链接1

[42] Lee YR, Jang MS, Cho HY, Kwon HJ, Kim S, Ahn WS. ZIF-8: a comparison of synthesis methods. Chem Eng J 2015;271:276‒80. 链接1

[43] Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ. High performance ZIF-8/6FDA‒DAM mixed matrix membrane for propylene/propane separations. J Membr Sci 2012;389:34‒42. 链接1

[44] Yang T, Chung TS. Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J Mater Chem A 2013;1(19):6081‒90. 链接1

[45] Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater 2017;29(32):1606999. 链接1

[46] Fan Y, Yu H, Xu S, Shen Q, Ye H, Li N. Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. J Membr Sci 2020;597:117775. 链接1

[47] Yu J, Wang C, Xiang L, Xu Y, Pan Y. Enhanced C3H6/C3H8 separation performance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals. Chem Eng Sci 2018;179:1‒12. 链接1

[48] Ma X, Swaidan RJ, Wang Y, Hsiung C, Han Y, Pinnau I. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Appl Nano Mater 2018;1(7):3541‒7. 链接1

[49] Hu Z, Faucher S, Zhuo Y, Sun Y, Wang S, Zhao D. Combination of optimization and metalated-ligand exchange: an effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem Eur J 2015;21(48):17246‒55. 链接1

[50] Hu Z, Peng Y, Gao Y, Qian Y, Ying S, Yuan D, et al. Direct synthesis of hierarchically porous metal‒organic frameworks with high stability and strong brønsted acidity: the decisive role of hafnium in efficient and selective fructose dehydration. Chem Mater 2016;28(8):2659‒67. 链接1

[51] Hu Z, Wang Y, Farooq S, Zhao D. A highly stable metal‒organic framework with optimum aperture size for CO2 capture. AlChE J 2017;63(9):4103‒14. 链接1

[52] Prasetya N, Donose BC, Ladewig BP. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J Mater Chem A 2018;6(34):16390‒402. 链接1

[53] Peh SB, Wang Y, Zhao D. Scalable and sustainable synthesis of advanced porous materials. ACS Sustain Chem Eng 2019;7(4):3647‒70. 链接1

[54] Feng L, Hou HB, Zhou H. UiO-66 derivatives and their composite membranes for effective proton conduction. Dalton Trans 2020;49(47):17130‒9. 链接1

[55] Peh SB, Karmakar A, Zhao D. Multiscale design of flexible metal-organic frameworks. Trends Chem 2020;2(3):199‒213. 链接1

[56] Sabetghadam A, Seoane B, Keskin D, Duim N, Rodenas T, Shahid S, et al. Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv Funct Mater 2016;26(18):3154‒63. 链接1

[57] Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal‒organic frameworks. ACS Appl Mater Interfaces 2015;7(2):1065‒77. 链接1

[58] Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA. Flexible metal-organic frameworks. Chem Soc Rev 2014;43(16):6062‒96. 链接1

[59] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005;309(5743):2040‒2. 链接1

[60] Hosono N, Kitagawa S. Modular design of porous soft materials via self-organization of metal-organic cages. Acc Chem Res 2018;51(10):2437‒46. 链接1

[61] Lee S, Jeong H, Nam D, Lah MS, Choe W. The rise of metal‒organic polyhedra. Chem Soc Rev 2021;50(1):528‒55. 链接1

[62] Gosselin AJ, Rowland CA, Bloch ED. Permanently microporous metal-organic polyhedra. Chem Rev 2020;120(16):8987‒9014. 链接1

[63] El-Sayed ESM, Yuan D. Metal‒organic cages (MOCs): from discrete to cage-based extended architectures. Chem Lett 2020;49(1):28‒53. 链接1

[64] Mollick S, Fajal S, Mukherjee S, Ghosh SK. Stabilizing metal-organic polyhedra (MOP): issues and strategies. Chem Asian J 2019;14(18):3096‒108. 链接1

[65] Perez EV, Balkus Jr KJ, Ferraris JP, Musselman IH. Metal‒organic polyhedra 18 mixed-matrix membranes for gas separation. J Membr Sci 2014;463:82‒93. 链接1

[66] Liu G, Yuan YD, Wang J, Cheng Y, Peh SB, Wang Y, et al. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages. J Am Chem Soc 2018;140(20):6231‒4. 链接1

[67] Liu G, Ju Z, Yuan D, Hong M. In situ construction of a coordination zirconocene tetrahedron. Inorg Chem 2013;52(24):13815‒7. 链接1

[68] Nam D, Huh J, Lee J, Kwak JH, Jeong HY, Choi K, et al. Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem Sci 2017;8(11):7765‒71. 链接1

[69] Xing WH, Li HY, Dong XY, Zang SQ. Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture. J Mater Chem A 2018;6(17):7724‒30. 链接1

[70] Lee S, Lee JH, Kim JC, Lee S, Kwak SK, Choe W. Porous Zr6L3 metallocage with synergetic binding centers for CO2. ACS Appl Mater Interfaces 2018;10(10):8685‒91. 链接1

[71] Liu J, Duan W, Song J, Guo X, Wang Z, Shi X, et al. Self-healing hyper-crosslinked metal-organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J Am Chem Soc 2019;141(30):12064‒70. 链接1

[72] Liu G, Yang Z, Zhou M, Wang Y, Yuan D, Zhao D. Heterogeneous postassembly modification of zirconium metal-organic cages in supramolecular frameworks. Chem Commun 2021;57(51):6276‒9. 链接1

[73] Li JR, Zhou HC. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat Chem 2010;2(10):893‒8. 链接1

[74] Eddaoudi M, Kim J, Wachter JB, Chae HK, O’Keeffe M, Yaghi OM. Porous metal‒organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J Am Chem Soc 2001;123(18):4368‒9. 链接1

[75] Barreda O, Bannwart G, Yap GPA, Bloch ED. Ligand-based phase control in porous molecular assemblies. ACS Appl Mater Interfaces 2018;10(14):11420‒4. 链接1

[76] Taggart GA, Antonio AM, Lorzing GR, Yap GPA, Bloch ED. Tuning the porosity, solubility, and gas-storage properties of cuboctahedral coordination cages via amide or ester functionalization. ACS Appl Mater Interfaces 2020;12(22):24913‒9. 链接1

[77] Tonigold M, Volkmer D. Comparative solvolytic stabilities of copper(II) nanoballs and dinuclear Cu(II) paddle wheel units. Inorg Chim Acta 2010;363(15):4220‒9. 链接1

[78] Yun YN, Sohail M, Moon JH, Kim TW, Park KM, Chun DH, et al. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem Asian J 2018;13(6):631‒5. 链接1

[79] Hosono N, Guo W, Omoto K, Yamada H, Kitagawa S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal-organic polyhedra. Chem Lett 2019;48(6):597‒600. 链接1

[80] Vetromile CM, Lozano A, Feola S, Larsen RW. Solution stability of Cu(II) metal-organic polyhedra. Inorg Chim Acta 2011;378(1):36‒41. 链接1

[81] Zhao J, Yan X. Rh(II)-based metal‒organic polyhedra. Chem Lett 2020;49(6):659‒65. 链接1

[82] Carné-Sánchez A, Albalad J, Grancha T, Imaz I, Juanhuix J, Larpent P, et al. Postsynthetic covalent and coordination functionalization of rhodium(II)-based metal‒organic polyhedra. J Am Chem Soc 2019;141(9):4094‒102. 链接1

[83] Carné-Sánchez A, Craig GA, Larpent P, Guillerm V, Urayama K, Maspoch D, et al. A coordinative solubilizer method to fabricate soft porous materials from insoluble metal‒organic polyhedra. Angew Chem Int Ed Engl 2019;58(19):6347‒50. 链接1

[84] Percástegui EG, Ronson TK, Nitschke JR. Design and applications of water-soluble coordination cages. Chem Rev 2020;120(24):13480‒544. 链接1

[85] Zhao D, Tan S, Yuan D, Lu W, Rezenom YH, Jiang H, et al. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv Mater 2011;23(1):90‒3. 链接1

[86] Niu Z, Wang L, Fang S, Lan PC, Aguila B, Perman J, et al. Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chem Sci 2019;10(27):6661‒5. 链接1

[87] Shah Buddin MMH, Ahmad AL. A review on metal‒organic frameworks as filler in mixed matrix membrane: recent strategies to surpass upper bound for CO2 separation. J CO2 Util 2021;51:101616. 链接1

[88] He S, Zhu B, Li S, Zhang Y, Jiang X, Lau CH, et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design. Separ Purif Tech 2022;284:120277. 链接1

[89] Wu X, Liu W, Wu H, Zong X, Yang L, Wu Y, et al. Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J Membr Sci 2018;548:309‒18. 链接1

[90] Japip S, Xiao Y, Chung TS. Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes. Ind Eng Chem Res 2016;55(35):9507‒17. 链接1

[91] Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song Q, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy 2017;2(7):17086. 链接1

[92] Ye C, Wu X, Wu H, Yang L, Ren Y, Wu Y, et al. Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chem Eng Sci 2020;216:115497. 链接1

[93] He S, Zhu B, Jiang X, Han G, Li S, Lau CH, et al. Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc Natl Acad Sci USA 2022;119(1):e2114964119. 链接1

[94] Yang F, Mu H, Wang C, Xiang L, Yao KX, Liu L, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem Mater 2018;30(10):3467‒73. 链接1

[95] Wu X, Ren Y, Sui G, Wang G, Xu G, Yang L, et al. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AlChE J 2020;66(2):e16800. 链接1

[96] Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 2016;513:155‒65. 链接1

[97] Ma C, Urban JJ. Hydrogen-bonded polyimide/metal‒organic framework hybrid membranes for ultrafast separations of multiple gas pairs. Adv Funct Mater 2019;29(32):1903243. 链接1

[98] Chen XY, Vinh-Thang H, Rodrigue D, Kaliaguine S. Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 separation. Ind Eng Chem Res 2012;51(19):6895‒906. 链接1

[99] Zhu H, Wang L, Jie X, Liu D, Cao Y. Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(Al). ACS Appl Mater Interfaces 2016;8(34):22696‒704. 链接1

[100] Seoane B, Téllez C, Coronas J, Staudt C. NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Separ Purif Tech 2013;111:72‒81. 链接1

[101] Yu G, Zou X, Sun L, Liu B, Wang Z, Zhang P, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity. Adv Mater 2019;31(15):1806853. 链接1

[102] Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, et al. Fabrication of MMMs with improved gas separation properties using externallyfunctionalized MOF particles. J Mater Chem A 2015;3(9):5014‒22. 链接1

[103] Thür R, Van Velthoven N, Lemmens V, Bastin M, Smolders S, De Vos D, et al. Modulator-mediated functionalization of MOF-808 as a platform tool to create high-performance mixed-matrix membranes. ACS Appl Mater Interfaces 2019;11(47):44792‒801. 链接1

[104] Jiang Y, Liu C, Caro J, Huang A. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous Mesoporous Mater 2019;274:203‒11. 链接1

[105] Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, et al. Delayed linker addition (DLA) synthesis for hybrid SOD ZIFs with unsubstituted imidazolate linkers for propylene/propane and n-butane/ibutane separations. Angew Chem Int Ed Engl 2021;60(18):10103‒11. 链接1

[106] Wu MX, Wang Y, Zhou G, Liu X. Core‒shell MOFs@MOFs: diverse designability and enhanced selectivity. ACS Appl Mater Interfaces 2020;12(49):54285‒305. 链接1

[107] Song Z, Qiu F, Zaia EW, Wang Z, Kunz M, Guo J, et al. Dual-channel, molecularsieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Lett 2017;17(11):6752‒8. 链接1

[108] Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J Membr Sci 2019;573:97‒106. 链接1

[109] Sánchez-Laínez J, Veiga A, Zornoza B, Balestra SRG, Hamad S, Ruiz-Salvador AR, et al. Tuning the separation properties of zeolitic imidazolate framework core‒shell structures via post-synthetic modification. J Mater Chem A 2017;5(48):25601‒8. 链接1

[110] Sánchez-Laínez J, Zornoza B, Orsi AF, Łozin´ ska MM, Dawson DM, Ashbrook SE, et al. Synthesis of ZIF-93/11 hybrid nanoparticles via post-synthetic modification of ZIF-93 and their use for H2/CO2 separation. Chem Eur J 2018;24(43):11211‒9. 链接1

[111] Yuan SH, Isfahani AP, Yamamoto T, Muchtar A, Wu CY, Huang G, et al. Nanosized core‒shell zeolitic imidazolate frameworks-based membranes for gas separation. Small Methods 2020;4(8):2000021. 链接1

[112] Wu C, Zhang K, Wang H, Fan Y, Zhang S, He S, et al. Enhancing the gas separation selectivity of mixed-matrix membranes using a dual-interfacial engineering approach. J Am Chem Soc 2020;142(43):18503‒12. 链接1

[113] Li C, Liu J, Zhang K, Zhang S, Lee Y, Li T. Coating the right polymer: achieving ideal metal-organic framework particle dispersibility in polymer matrixes using a coordinative crosslinking surface modification method. Angew Chem Int Ed Engl 2021;60(25):14138‒45. 链接1

[114] Wang Z, Wang D, Zhang S, Hu L, Jin J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater 2016;28(17):3399‒405. 链接1

[115] Wang B, Qiao Z, Xu J, Wang J, Liu X, Zhao S, et al. Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Adv Mater 2020;32(22):1907701. 链接1

[116] Wang H, He S, Qin X, Li C, Li T. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. J Am Chem Soc 2018;140(49):17203‒10. 链接1

[117] Qian Q, Wu AX, Chi WS, Asinger PA, Lin S, Hypsher A, et al. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Appl Mater Interfaces 2019;11(34):31257‒69. 链接1

[118] Dai D, Wang H, Li C, Qin X, Li T. A physical entangling strategy for simultaneous interior and exterior modification of metal-organic framework with polymers. Angew Chem Int Ed Engl 2021;60(13):7389‒96. 链接1

[119] Guo X, Huang H, Liu D, Zhong C. Improving particle dispersity and CO2 separation performance of amine-functionalized CAU-1 based mixed matrix membranes with polyethyleneimine-grafting modification. Chem Eng Sci 2018;189:277‒85. 链接1

[120] Wang B, Xu J, Wang J, Zhao S, Liu X, Wang Z. High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities. J Membr Sci 2021;625:119175. 链接1

[121] Wang H, Ni Y, Dong Z, Zhao Q. A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. React Funct Polym 2021;160:104825. 链接1

[122] Xie K, Fu Q, Kim J, Lu H, He Y, Zhao Q, et al. Increasing both selectivity and permeability of mixed-matrix membranes: sealing the external surface of porous MOF nanoparticles. J Membr Sci 2017;535:350‒6. 链接1

[123] Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. Poly(ionic liquid)-functionalized UiO-66-(OH)2: improved interfacial compatibility and separation ability in mixed matrix membranes for CO2 separation. Ind Eng Chem Res 2022;61(22):7626‒33. 链接1

[124] Lee TH, Jung JG, Kim YJ, Roh JS, Yoon HW, Ghanem BS, et al. Defect engineering in metal‒organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew Chem Int Ed Engl 2021;60(23):13081‒8. 链接1

[125] Liu X, Wang X, Bavykina AV, Chu L, Shan M, Sabetghadam A, et al. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl Mater Interfaces 2018;10(25):21381‒9. 链接1

[126] Kitchin M, Teo J, Konstas K, Lau CH, Sumby CJ, Thornton AW, et al. AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes. J Mater Chem A 2015;3(29):15241‒7. 链接1

[127] Liu J, Fulong CRP, Hu L, Huang L, Zhang G, Cook TR, et al. Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. J Membr Sci 2020;606:118122. 链接1

[128] Sohail M, An H, Choi W, Singh J, Yim K, Kim BH, et al. Sorption-enhanced thin film composites with metal-organic polyhedral nanocages for CO2 separation. J Membr Sci 2021;620:118826. 链接1

[129] Fulong CRP, Liu J, Pastore VJ, Lin H, Cook TR. Mixed-matrix materials using metal-organic polyhedra with enhanced compatibility for membrane gas separation. Dalton Trans 2018;47(24):7905‒15. 链接1

[130] Ma J, Ying Y, Yang Q, Ban Y, Huang H, Guo X, et al. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2-CH4 mixture. Chem Commun 2015;51(20):4249‒51. 链接1

[131] Tien-Binh N, Vinh-Thang H, Chen XY, Rodrigue D, Kaliaguine S. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. J Membr Sci 2016;520:941‒50. 链接1

[132] Lin R, Ge L, Hou L, Strounina E, Rudolph V, Zhu Z. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl Mater Interfaces 2014;6(8):5609‒18. 链接1

[133] Xu R, Wang Z, Wang M, Qiao Z, Wang J. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. J Membr Sci 2019;573:455‒64. 链接1

[134] Chen Z, Yan D, Ma L, Zhang Y, Zhang J, Li H, et al. Polymerizable metal-organic frameworks for the preparation of mixed matrix membranes with enhanced interfacial compatibility. iScience 2021;24(6):102560. 链接1

[135] Jiang X, Li S, He S, Bai Y, Shao L. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J Mater Chem A 2018;6(31):15064‒73. 链接1

[136] Katayama Y, Bentz KC, Cohen SM. Defect-free MOF-based mixed-matrix membranes obtained by corona cross-linking. ACS Appl Mater Interfaces 2019;11(13):13029‒37. 链接1

[137] Gao X, Zhang J, Huang K, Zhang J. ROMP for metal‒organic frameworks: an efficient technique toward robust and high-separation performance membranes. ACS Appl Mater Interfaces 2018;10(40):34640‒5. 链接1

[138] Harris K, Fujita D, Fujita M. Giant hollow MnL2n spherical complexes: structure, functionalisation and applications. Chem Commun 2013;49(60):6703‒12. 链接1

[139] Yang Z, Liu G, Yuan YD, Peh SB, Ying Y, Fan W, et al. Homoporous hybrid membranes containing metal-organic cages for gas separation. J Membr Sci 2021;636:119564. 链接1

[140] Yao BJ, Jiang WL, Dong Y, Liu ZX, Dong YB. Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chem Eur J 2016;22(30):10565‒71. 链接1

[141] Liu D, Xiang L, Chang H, Chen K, Wang C, Pan Y, et al. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chem Eng Sci 2019;204:151‒60. 链接1

[142] Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, et al. Analogous mixed matrix membranes with self-assembled interface pathways. Angew Chem Int Ed Engl 2021;60(11):5864‒70. 链接1

[143] Hu L, Clark K, Alebrahim T, Lin H. Mixed matrix membranes for post-combustion carbon capture: from materials design to membrane engineering. J Membr Sci 2022;644:120140. 链接1

[144] Tiwari RR, Jin J, Freeman BD, Paul DR. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). J Membr Sci 2017;537:362‒71. 链接1

[145] Rodenas T, van Dalen M, García-Pérez E, Serra-Crespo P, Zornoza B, Kapteijn F, et al. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure‒performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv Funct Mater 2014;24(2):249‒56. 链接1

[146] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 2015;14(1):48‒55. 链接1

[147] Liu G, Zhang X, Yuan YD, Yuan H, Li N, Ying Y, et al. Thin-film nanocomposite membranes containing water-stable zirconium metal-organic cages for desalination. ACS Mater Lett 2021;3(3):268‒74. 链接1

[148] Mileo PGM, Yuan S, Ayala Jr S, Duan P, Semino R, Cohen SM, et al. Structure of the polymer backbones in polyMOF materials. J Am Chem Soc 2020;142(24):10863‒8. 链接1

[149] Duan P, Moreton JC, Tavares SR, Semino R, Maurin G, Cohen SM, et al. Polymer infiltration into metal‒organic frameworks in mixed-matrix membranes detected in situ by NMR. J Am Chem Soc 2019;141(18):7589‒95. 链接1

[150] Carja ID, Tavares SR, Shekhah O, Ozcan A, Semino R, Kale VS, et al. Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization. ACS Appl Mater Interfaces 2021;13(24):29041‒7. 链接1

[151] Semino R, Ramsahye NA, Ghoufi A, Maurin G. Microscopic model of the metal-organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Appl Mater Interfaces 2016;8(1):809‒19. 链接1

[152] Thür R, Van Havere D, Van Velthoven N, Smolders S, Lamaire A, Wieme J, et al. Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development. J Mater Chem A 2021;9(21):12782‒96. 链接1

[153] Yuan Q, Longo M, Thornton AW, McKeown NB, Comesaña-Gándara B, Jansen JC, et al. Imputation of missing gas permeability data for polymer membranes using machine learning. J Membr Sci 2021;627:119207. 链接1

[154] Barnett JW, Bilchak CR, Wang Y, Benicewicz BC, Murdock LA, Bereau T, et al. Designing exceptional gas-separation polymer membranes using machine learning. Sci Adv 2020;6(20):eaaz4301. 链接1

[155] Wu S, Kondo Y, Kakimoto M, Yang B, Yamada H, Kuwajima I, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput Mater 2019;5(1):66. 链接1

相关研究