期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第26卷 第7期 doi: 10.1016/j.eng.2023.01.006

系统性红斑狼疮患者的血清IgG糖链特征

a State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
b Guangdong–Hong Kong–Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
c Peng Cheng Laboratory, Shenzhen 518055, China
d National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
e State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
f Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China
g Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
h The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
i Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519020, China

# These authors contributed equally to this work.

收稿日期: 2022-09-22 修回日期: 2023-01-10 录用日期: 2023-01-11 发布日期: 2023-03-08

下一篇 上一篇

摘要

系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种发病机制不明、临床表型异质性大的自身免疫性疾病。目前已有的SLE血清生物标志物灵敏度或特异性有限,使得SLE的早期精准诊断存在困难。在本研究中,通过对389 例SLE患者及304 例健康对照者进行深入的糖组学分析,鉴定出血清免疫球蛋白G(IgG)上的两种N-糖链能够作为SLE的诊断生物标志物。在容易与SLE混淆的其他系统性自身免疫性疾病(如类风湿性关节炎、原发性干燥综合征或系统性硬化症)中,这两种生物标志物没有出现显著变化,提示这两种N-糖链生物标志物对诊断SLE具有特异性。值得注意的是,这两种N-糖链生物标志物被证
明是自身抗体非依赖性的,并且适用于所有阶段的SLE患者。基于片段特异性糖链分析和糖肽分析,发现这两种N-糖链生物标志物位于IgG 上的Fc 区域,并与疾病活动性密切相关。而酶学分析结果则提示,SLE 患者体内一系列糖转移酶的失调可能是观察到的糖链产生变化的原因。研究结果为基于血清IgG糖基化和SLE潜在的新致病因素的高效人群筛查提供了新的思路。

补充材料

图片

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

参考文献

[ 1 ] Ramos-Casals M, Brito-Zerón P, Kostov B, Sisó-Almirall A, Bosch X, Buss D, et al. Google-driven search for big data in autoimmune geoepidemiology: analysis of 394,827 patients with systemic autoimmune diseases. Autoimmun Rev 2015;14(8):670–9. 链接1

[ 2 ] Mitratza M, Klijs B, Hak AE, Kardaun JWPF, Kunst AE. Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology 2021;60(3):1321–30. 链接1

[ 3 ] Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M, et al. Guidelines for biomarkers in autoimmune rheumatic diseases—evidence based analysis. Autoimmun Rev 2019;18(1):93–106. 链接1

[ 4 ] Wahren-Herlenius M, Dörner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 2013;382(9894):819–31. 链接1

[ 5 ] Tofighi T, Morand EF, Touma Z. Systemic lupus erythematosus outcome measures for systemic lupus erythematosus clinical trials. Rheum Dis Clin North Am 2021;47(3):415–26. 链接1

[ 6 ] Agmon-Levin N, Mosca M, Petri M, Shoenfeld Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev 2012;11(8):593–5. 链接1

[ 7 ] Rasmussen A, Radfar L, Lewis D, Grundahl K, Stone DU, Kaufman CE, et al. Previous diagnosis of Sjögren’s Syndrome as rheumatoid arthritis or systemic lupus erythematosus. Rheumatology 2016;55(7):1195–201. 链接1

[ 8 ] Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, et al. Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets. Autoimmun Rev 2018;17(6):625–35. 链接1

[ 9 ] Rekvig OP. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat Rev Rheumatol 2015;11(9):530–40. 链接1

[10] Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus 2011;20(3):250–5. 链接1

[11] Subedi GP, Barb AW. The structural role of antibody N-glycosylation in receptor interactions. Structure 2015;23(9):1573–83. 链接1

[12] Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020;30(4):202–13. 链接1

[13] Wang W. Glycomedicine: the current state of the art. Engineering. In press.

[14] Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, et al. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 2000;37(12–13):697–706. 链接1

[15] Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, et al. Role of oligosaccharide residues of IgG1-Fc in FccRIIb binding. J Biol Chem 2001;276(49):45539–47. 链接1

[16] Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1995;1(3):237–43. 链接1

[17] Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017;29(7):303–10. 链接1

[18] Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 2007;25(1):21–50. 链接1

[19] Nimmerjahn F, Ravetch JV. Fcc receptors as regulators of immune responses. Nat Rev Immunol 2008;8(1):34–47. 链接1

[20] Zhou X, Motta F, Selmi C, Ridgway WM, Gershwin ME, Zhang W. Antibody glycosylation in autoimmune diseases. Autoimmun Rev 2021;20(5):102804. 链接1

[21] Vucˇkovic´ F, Krištic´ J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 2015;67(11):2978–89. 链接1

[22] Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, et al. A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat Commun 2017;8(1):631. 链接1

[23] Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40(9):1725. 链接1

[24] Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al.; 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010;62(9):2569–81. 链接1

[25] Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al.; International Sjögren’s Syndrome Criteria Working Group. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s Syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol 2017;69(1):35–45. 链接1

[26] Van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013;65(11):2737–47. 链接1

[27] Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8(1):118–27. 链接1

[28] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28(6):882–3. 链接1

[29] Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf 2011;12(1):77. 链接1

[30] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44(3):837–45. 链接1

[31] Abès R, Teillaud JL. Impact of glycosylation on effector functions of therapeutic IgG. Pharmaceuticals 2010;3(1):146–57. 链接1

[32] Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci USA 2001;98(3):1142–7. 链接1

[33] Pisetsky DS. Antinuclear antibody testing—misunderstood or misbegotten? Nat Rev Rheumatol 2017;13(8):495–502. 链接1

[34] Axford JS. Glycosylation and rheumatic disease. Biochim Biophys Acta 1999;1455(2–3):219–29. 链接1

[35] Axford JS. Glycosylation and rheumatic disease. In: Crusio WE, Dong H, Radeke HH, Rezaei N, Steinlein O, Xiao J, editors. Advances in experimental medicine and biology. Springer; 1998. p. 163–73. 链接1

[36] Walport MJ. Complement and systemic lupus erythematosus. Arthritis Res 2002;4(Suppl 3):S279–93. 链接1

[37] Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis 2014;73(9):1601–6. 链接1

[38] Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol 2013;33(6):479–92. 链接1

[39] Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the antiinflammatory activity of sialylated IgG Fcs. J Clin Immunol 2010;30(Suppl 1): S9–S. 链接1

[40] Yau LF, Liu J, Jiang M, Bai G, Wang JR, Jiang ZH. An integrated approach for comprehensive profiling and quantitation of IgG-Fc glycopeptides with application to rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci 2019;1122–1123:64–72. 链接1

[41] Lauc G, Huffman JE, Pucˇic´ M, Zgaga L, Adamczyk B, Muzˇinic´ A, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet 2013;9(1): e1003225. 链接1

[42] Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth JD. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 2007;27 (2):308–20. 链接1

[43] Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med 2020;172(11):ITC81–96. 链接1

[44] Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 2017;13(10):621–30. 链接1

[45] Sjöwall C, Zapf J, von Löhneysen S, Magorivska I, Biermann M, Janko C, et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 2015;24(6):569–81. 链接1

[46] Han J, Zhou Z, Zhang R, You Y, Guo Z, Huang J, et al. Fucosylation of anti-dsDNA IgG1 correlates with disease activity of treatment-naïve systemic lupus erythematosus patients. EBioMedicine 2022;77:103883. 链接1

[47] Wang J et al. Serum IgG N-glycans act as novel serum biomarkers of ankylosing spondylitis. Ann Rheum Dis 2018;78(5):705–7. 链接1

[48] Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA 2017;114 (13):3485–90. 链接1

[49] Wang TT. IgG Fc Glycosylation in human immunity. Curr Top Microbiol Immunol 2019;423:63–75. 链接1

[50] Wang LX, Tong X, Li C, Giddens JP, Li T. Glycoengineering of antibodies for modulating functions. Annu Rev Biochem 2019;88(1):433–59. 链接1

相关研究