期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2017年 第19卷 第5期 doi: 10.15302/J-SSCAE-2017.05.018

轻量化材料焊接车间智能化要素分析

机械科学研究总院,北京 100044

资助项目 :中国工程院咨询项目“基础制造工艺与智能化技术融合发展战略研究”(2015-ZCQ-01) 收稿日期: 2017-07-17 修回日期: 2017-09-29 发布日期: 2017-11-28 13:20:14.000

下一篇 上一篇

摘要

本文从轻量化材料焊接最终目标和需求、数字化和智能化技术发展趋势、焊接车间柔性构建三个维度出发,结合先进制造车间智能化和焊接工艺数字化技术发展趋势,分析得出了轻量化材料焊接车间智能化需满足的焊接控制管理实时化、焊接过程质量控制闭环化、焊接性分析数据化、焊接工艺分析智能化、快速互换装夹(柔性化)、焊缝质量检测工具化、焊接生产管理数字化、焊接基础数据库无纸化八大基本要素,并对这些要素分别进行了阐述,相关结论可以作为焊接车间智能化改造或新建的参考。

图片

图 1

图 2

图 3

参考文献

[ 1 ] 张宝柱, 孙洁琼. 钛合金在典型民用飞机机体结构上的应用现状 [J]. 航空工程进展, 2014, 5(3): 275–280.
Zhang B Z, Sun J Q. Recent applications of Titanium alloys in typical commercial aircraft fuselage structure [J]. Advances in Aeronacitical Science and Engineering, 2014, 5(3): 275–280. 链接1

[ 2 ] 孙翔. 基于PID 技术铝合金MIG 焊工艺设计[D]. 长沙: 湖南大学(硕士学位论文), 2013.
Sun X. The process control of aluminum alloy MIG welding based on PID technology (Master’s thesis) [D]. Changsha: Hunan Uni-versity, 2013. Chinese. 链接1

[ 3 ] 张磊 . 汽车轻量化材料及制造工艺研究现状 [J]. 科技展望 , 2017 (3): 38.
Zhang L. Research status of lightweight automotive materials and its manufacturing technologies [J]. Science and Technology, 2017 (3): 38. Chinese. 链接1

[ 4 ] 肖祺, 何毅政. 泡沫铝材料在轨道列车上的应用 [J]. 科技展望, 2014 (3): 19–20.
Xiao Q, He Y Z. The application of aluminum foams in rail train [J]. Science and Technology, 2014 (3): 19–20. Chinese. 链接1

[ 5 ] Seffer O, Pfeifer R, Springer A, et al. Investigations on laser beam welding of different dissimilar joints of steel and aluminum alloys for automotive lightweight construction [J]. Physics Procedia, 2016 (83): 383–395.
Seffer O, Pfeifer R, Springer A, et al. Investigations on laser beam welding of different dissimilar joints of steel and aluminum alloys for automotive lightweight construction [J]. Physics Procedia, 2016 (83): 383–395. Chinese. 链接1

[ 6 ] 段孟琪. 中国制造业的发展瓶颈与改进问题探究 [J]. 商场现代化, 2010 (30): 75–76.
Duan M Q. Research on the development bottleneck and improve-ment of Chinese manufacturing industry [J]. Market Moderniza-tion, 2010 (30): 75–76. Chinese. 链接1

[ 7 ] 林尚扬, 关桥. 我国制造业焊接生产现状与发展战略研究 [J]. 机械工人: 热加工, 2004 (8): 16–20.
Lin S Y, Guan Q. Study on the production situation and develop-ment strategies of Chinese welding manufacturing [J]. Machinist Metal Forming, 2004 (8): 16–20. Chinese. 链接1

[ 8 ] 张光先, 陈冬岩, 李朋. 焊接设备的数字化、网络化及群控系统[J]. 电焊机, 2013, 43(5): 10–16.
Zhang G X, Chen D Y, Li P. Digitalization, networking, and group control system of welding equipment [J]. Electric Welding Ma-chine, 2013, 43(5): 10–16. Chinese. 链接1

[ 9 ] 孙西领. 长春博泽公司焊接生产线改进研究 [D]. 长春:吉林大学(硕士学位论文), 2014.
Sun X L. The improvement study for welding production line of brose Changchun company (Master’s thesis) [D]. Changchun: Jilin University, 2014. Chinese. 链接1

[10] 周济. 制造业数字化智能化 [J]. 中国机械工程, 2012, 23(20): 2395–2400.
Zhou J. Digitization and intellectualization for manufacturing industries [J]. China Mechanical Engineering, 2012, 23(20): 2395–2400. Chinese. 链接1

[11] 张国军, 黄刚. 数字化工厂技术的应用现状与趋势 [J]. 航空制造技术, 2013 (8): 34–37.
Zhang G J, Huang G. Digital factory: Its application situation and trend [J]. Aeronautical Manufacturing Technology, 2013 (8): 34–37. Chinese. 链接1

[12] 李晓延, 武传松, 李午申. 中国焊接制造领域学科发展研究 [J]. 机械工程学报, 2012, 48(6): 19–31.
Li X Y, Wu C S, Li W S. Study on the progress of welding science and technology in China [J]. Chinese Journal of Mechanical Engi-neering, 2012, 48(6): 19–31. Chinese. 链接1

[13] Lee D, Ku N, Kim T, et al. Development and application of an intelligent welding robot system for shipbuilding [J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2): 377–388. 链接1

[14] 刘检华, 孙连胜, 张旭, 等. 三维数字化设计制造技术内涵及关键问题 [J]. 计算机集成制造系统, 2014, 20(3): 494–504.
Liu J H, Sun L S, Zhang X, et al. Connotation and key problem of three-dimensional digital design and manufacturing technology [J]. Computer Integrated Manufacturing Systems, 2014, 20(3): 494–504. Chinese. 链接1

[15] 刘金龙, 李江. 信息化焊接管理系统iWeld4.0 [J]. 金属加工(热加工), 2015 (12): 38–41.
Liu J L, Li J. The iWeld4.0: Informational welding management system [J]. MW Metal Forming, 2015 (12): 38–41. Chinese. 链接1

[16] 王振民, 冯允樑, 冯锐杰. 可视化人机交互系统的研制 [J]. 焊接技术, 2015, 44(2): 46–50.
Wang Z M, Feng Y L, Feng R J, The development of visualization 114Factor Analysis of Lightweight Material Welding Workshop Intelligentizationhuman-computer interaction system [J]. Welding Technology, 2015, 44(2): 46–50. Chinese. 链接1

[17] 熊华平, 毛建英, 陈冰清, 等. 航空航天轻质高温结构材料的焊接技术研究进展 [J]. 材料工程, 2013 (10): 1–12.
Xiong H P, Mao J Y, Chen B Q, et al. Research advances on the welding and joining technologies of light-mass high-temperature structural materials in aerospace field [J]. Journal of Materials En-gineering, 2013 (10): 1–12. Chinese. 链接1

[18] 关桥. 焊接/ 连接与增材制造(3D 打印) [J]. 焊接, 2014 (5): 1–8.
Guan Q. Welding/connection and additive manufacturing (3D printing) [J]. Welding & Joining, 2014 (5): 1–8. Chinese. 链接1

[19] 都东, 侯润石, 邵家鑫, 等. X 射线动态图像处理与焊缝缺陷自动检测 [C]. 镇江: 第十六次全国焊接学术会议, 2011.
Du D, Hou R S, Shao J X, et al. X-ray dynamic image processing and the automatic inspection of welding defects [C]. Zhenjiang: The Sixteenth National Conference on Welding, 2011. Chinese. 链接1

[20] 黄民, 李功. 焊缝超声无损检测中的缺陷智能识别方法研究 [J]. 中国设备工程, 2009 (4): 17–19.
Huang M, Li G, Research on the intelligent identification method of welding defects ultrasonic nondestructive testing [J]. China Plant Engineering, 2009 (4): 17–19. Chinese. 链接1

[21] 孟永奇. 激光技术在焊缝质量检测方法中的应用 [J]. 热加工工艺, 2013 (24): 225–227.
Meng Y Q. Study on weld seam quality detection by laser technol-ogy [J]. Hot Working Technology, 2013 (24): 225–227. Chinese. 链接1

相关研究