期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2018年 第20卷 第6期 doi: 10.15302/J-SSCAE-2018.06.014

量子通信的前沿、理论与实践

1. 清华大学物理系,北京 100084;

2.济南量子技术研究院,济南370102

资助项目 :中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10) 收稿日期: 2018-10-25 修回日期: 2018-11-26 发布日期: 2018-12-31

下一篇 上一篇

摘要

量子通信是量子信息科学的重要分支,其中最重要的两个应用是量子密钥分发和量子隐形传态。量子密钥分发可为通信双方提供无条件安全的密钥分发方式,其理论安全性由量子力学规律保证。量子密钥分发因其无条件安全的特点受到广泛关注。本文通过对量子密钥分发的广泛调研,系统地介绍了量子密钥分发的主要内容、理论安全性证明现状和实际安全性证明现状,着重介绍了诱骗态方法和测量装置无关的量子密钥分发方案;同时针对量子密钥分发在信道衰减严重时面临的问题做了系统调研,介绍了目前学术界对该问题的主流解决方法,即量子中继或卫星中继;最后指出量子密钥分发已经由理论模型发展到实际系统,为后续开展量子密钥分发相关研究提供了有益参考。

参考文献

[ 1 ] 苏晓琴, 郭光灿. 两种典型的量子通信技术 [J]. 广西大学学报 (自然科学版), 2005, 30(1): 30–39. Su X Q, Guo G C. Two typical quantum communication technology [J]. Journal of Guangxi University (Natural Science Edition), 2005, 30(1): 30–39.
Su X Q, Guo G C. Two typical quantum communication technologies [J]. Journal of Guangxi University (Natural Science Edition), 2005, 30(1): 30–39. Chinese. 链接1

[ 2 ] Yao A C C. Quantum circuit complexity[C]. Palo Alto: IEEE 34th Annual Foundations of Computer Science, 1993. 链接1

[ 3 ] Yuan Z S, Bao X H, Lu C Y, et al. Entangled photons and quantum communication [J]. Physics Reports, 2010, 497(1): 1–40. 链接1

[ 4 ] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglementbased quantum communication over 144 km [J]. Nature Physics, 2007, 3(7): 481–486. 链接1

[ 5 ] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. Bangalore: IEEE International Conference on Computers, Systems and Signal Processing, 1984. 链接1

[ 6 ] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(5410): 2050–2056. 链接1

[ 7 ] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters, 2000, 85(2): 441–444. 链接1

[ 8 ] Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM (JACM), 2001, 48(3): 351–406. 链接1

[ 9 ] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330–1333. 链接1

[10] Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination [J]. Nature Photonics, 2010, 4(10): 686–689. 链接1

[11] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901. 链接1

[12] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503. 链接1

[13] Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504. 链接1

[14] Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding [J]. Physical Review Letters, 2007, 98(1): 010505. 链接1

[15] Rosenberg D, Harrington J W, Rice P R, et al. Long-distance decoy-state quantum key distribution in optical fiber [J]. Physical Review Letters, 2007, 98(1): 010503. 链接1

[16] Schmitt-Manderbach T, Weier H, Fürst M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km [J]. Physical Review Letters, 2007, 98(1): 010504. 链接1

[17] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503. 链接1

[18] Liu Y, Chen T Y, Wang L J, et al. Experimental measurementdevice-independent quantum key distribution [J]. Physical Review Letters, 2013, 111(13): 130502. 链接1

[19] Tang Y L, Yin H L, Chen S J, et al. Measurement-deviceindependent quantum key distribution over 200 km [J]. Physical Review Letters, 2014, 113(19): 190501.

[20] Zhou Y H, Yu Z W, Wang X B. Making the decoy-state measurement-device-independent quantum key distribution practically useful [J]. Physical Review A, 2016, 93(4): 042324. 链接1

[21] Yin H L, Chen T Y, Yu Z W, et al. Measurement-deviceindependent quantum key distribution over a 404 km optical fiber [J]. Physical Review Letters, 2016, 117(19): 190501. 链接1

[22] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Physical Review Letters, 1991, 67(6): 661–663. 链接1

[23] Gerhardt I, Liu Q, Lamaslinares A, et al. Experimentally faking the violation of Bell’s inequalities [J]. Physical Review Letters, 2011, 107(17): 170404. 链接1

[24] Mayers D, Yao A. Quantum cryptography with imperfect apparatus [C]. Palo Alto: IEEE Symposium on Foundations of Computer Science, 1998. 链接1

[25] Vazirani U, Vidick T. Fully device-independent quantum key distribution [J]. Physical Review Letters, 2014, 113(14): 140501. 链接1

[26] Yang S J, Wang X J, Bao X H, et al. An efficient quantum light– matter interface with sub-second lifetime [J]. Nature Photonics, 2016, 10(6): 381–384. 链接1

[27] Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication [J]. Nature Photonics, 2017, 11(8): 509–513. 链接1

[28] Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography [J]. Optics Express, 2009, 17(8): 6540–6549. 链接1

[29] Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and intercity quantum communication network [J]. Optics Express, 2010, 18(26): 27217–27225. 链接1

[30] Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution [J]. Nature, 2017, 549(7670): 43–47. 链接1

[31] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343): 1140–1144. 链接1

[32] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation [J]. Nature, 2017, 549(7670): 70–73. 链接1

相关研究