期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第4期 doi: 10.15302/J-SSCAE-2022.04.016

量子计算研究现状与未来发展

1. 南方科技大学量子科学与工程研究院,广东深圳 518055;

2. 深圳国际量子研究院,广东深圳 518048;

3. 广东省量子科学与工程重点实验室,广东深圳 518055;

4. 国防科技大学计算机学院,长沙 410073;

5. 中国科学技术大学近代物理系,合肥 230026;

6. 南方科技大学物理系,广东深圳 518055

资助项目 :中国工程院咨询项目“量子信息技术工程化应用发展战略研究”(2021-HYZD-01) 收稿日期: 2022-06-05 修回日期: 2022-07-14 发布日期: 2022-08-03

下一篇 上一篇

摘要

量子计算乃至更为广泛的量子信息,是基于量子力学原理发展出来的概念与技术体系,涉及信息的本质及其处理。量子计算利用量子叠加、量子纠缠等资源进行信息编码和处理,已被证明在若干问题上具有相对于经典计算的极大优势,在实用化后将对信息及相关科技产生深远影响。本文概要回顾了量子计算的发展历史,如量子计算思想与概念的形成、重要理论及算法的发展以及应用情况;梳理总结了代表性的量子计算技术路线及其发展态势,如超导量子计算、分布式超导量子计算、光量子计算、囚禁离子量子计算、硅基量子计算及若干其他体系。着眼不同技术路线面临的共性问题,对我国量子计算领域未来发展提出建议:注重战略规划和布局,培养高水平研究团队,加强基础研究、核心技术、关键设备的自主研发。

参考文献

[ 1 ] Preskill J. Quantum computing 40 years later [EB/OL]. (2021-06-19)[2022-05-15]. https: //arxiv.org/abs/2106.10522.
Preskill J. Quantum computing 40 years later [EB/OL]. (2021-06-19) [2022-05-15]. 链接1

[ 2 ] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]. Santa Fe: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.

[ 3 ] Preskill J. Quantum computing in the NISQ era and beyond [J]. Quantum, 2018, 2: 79.

[ 4 ] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1985, 400(1818): 97‒117.

[ 5 ] Deutsch D. Quantum computational networks [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1989, 425(1868): 73‒90.

[ 6 ] Yao A C C. Quantum circuit complexity [C]. Palo Alto: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, 1993.

[ 7 ] Bernstein E, Vazirani U. Quantum complexity theory [J]. SIAM Journal on Computing, 1993, 26(5): 11‒20.

[ 8 ] Grover L K. A fast quantum mechanical algorithm for database search [C]. Philadelphia: Proceedings of the 28th annual ACM Symposium on Theory of Computing, 1996.

[ 9 ] Lloyd S. Universal quantum simulators [J]. Science, 1996, 273(5278): 1073‒1078.

[10] Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103: 1‒5.

[11] Panella M, Martinelli G. Neural networks with quantum architecture and quantum learning [J]. International Journal of Circuit Theory and Applications, 2011, 39(1): 61‒77.

[12] Huang H Y, Broughton M, Cotler J, et al. Quantum advantage in learning from experiments [J]. Science, 2022, 376(6598): 1182‒1186.

[13] Peruzzo A, McClean, J, Shadbolt P, et al. A variational eigenvalue solver on a photonic quantum processor [J]. Nature Communications, 2014, 5: 1‒7.

[14] Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm [EB/OL]. (2014-11-14)[2022-05-15]. https://arxiv.org/abs/1411.4028.
Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm [EB/OL]. (2014-11-14) [2022-05-15]. 链接1

[15] Ying M S. Foundations of quantum programming [M]. San Mateo: Morgan Kaufmann Publishers Inc., 2016.

[16] Fu X, Yu J T, Su X, et al. Quingo: A programming framework for heterogeneous quantum-classical computing with NISQ features [J]. ACM Transactions on Quantum Computing, 2021, 2(4): 1‒37.

[17] Guo J Z, Lou H Z, Li R L, et al. isQ: Towards a practical software stack for quantum programming [EB/OL] (2022-05-08)[2022-05-15]. https: //arxiv.org/abs/2205.03866.
Guo J Z, Lou H Z, Li R L, et al. isQ: Toward a practical software stack for quantum programming [EB/OL] (2022-05-08)[2022-05-15]. 链接1

[18] Fu X, Rol M A, Bultink C C, et al. An experimental microarchitecture for a superconducting quantum processor [C]. Boston: 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017.

[19] Zhang M Y, Xie L, Zhang Z X, et al. Exploiting different levels of parallelism in the quantum control microarchitecture for superconducting oubit [C]. Chicago: 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.

[20] Kwon S, Tomonaga A, Bhai G L, et al. Tutorial: Gate-based superconducting quantum computing [J]. Journal of Applied Physics, 2021, 129: 1‒12.

[21] Yan F, Krantz P, Sung Y K, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates [J]. Physical Review Applied, 2018, 10(5): 1‒15.

[22] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574: 505‒510.

[23] Wu Y L, Bao W S, Cao S R, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Physical Review Letters, 2021, 127: 1‒15.

[24] Place A P M, Rodgers L V H, Mundada P, et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds [J]. Nature Communications, 2021, 12: 1‒6.

[25] Wang C L, Li X G, Xu H K, et al. Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds [J]. npj Quantum Information, 2022, 8: 1‒6.
Wang C L, Li X G, Xu H K, et al. Toward practical quantum comput‐ ers: Transmon qubit with a lifetime approaching 0.5 milliseconds [J]. npj Quantum Information, 2022, 8: 1‒6.

[26] Sung Y K, Ding L, Braumuller J, et al. Realization of high-fidelity cz and z z-free iSWAP gates with a tunable coupler [J]. Physical Review X, 2021, 11(2): 1‒12.

[27] Stehlik J, Zajac D M, Underwood, D L, et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits [J]. Physical Review Letters, 2021, 127: 1‒6.

[28] Andersen C K, Remm A, Lazar S, et al. Repeated quantum error detection in a surface code [J]. Nature Physics, 2020, 16: 875‒880.

[29] Krinner S, Lacroix N, Remm A, et al. Realizing repeated quantum error correction in a distance-three surface code [J]. Nature, 2022, 605: 669‒674.

[30] Zhong Y P, Chang H S, Satzinger K J, et al. Violating Bell´s inequality with remotely connected superconducting qubits [J]. Nature Physics, 2019, 15: 741‒744.

[31] Kurpiers P, Magnard P, Walter T, et al. Deterministic quantum state transfer and remote entanglement using microwave photons [J]. Nature, 2018, 558: 264‒267.

[32] Magnard P, Storz S, Kurpiers P, et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems [J]. Physical Review Letters, 2020, 125: 1‒6.

[33] Zhong Y P, Chang H S, Bienfait A, et al. Deterministic multi-qubit entanglement in a quantum network [J]. Nature, 2021, 590: 571‒575.

[34] He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability [J]. Nature Nanotechnology, 2013, 8: 213‒217.

[35] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409: 46‒52.

[36] Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies [J]. Nature Reviews Physics, 2022, 4: 194‒208.

[37] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460‒1463.

[38] Zhong H S, Deng Y H, Qin J, et al. Phase-programmable gaussian boson sampling using stimulated squeezed light [J]. Physical Review Letters, 2021, 127: 1‒14.

[39] Madsen L S, Laudenbach F, Askarani, M F, et al. Quantum computational advantage with a programmable photonic processor [J]. Nature, 2022, 606: 75‒81.

[40] Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Physical Review Letters, 1995, 74: 4091‒4094.

[41] Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures [J] Proceedings of the National Academy of Sciences, 2017, 114(13): 3305‒3310.

[42] Wang P F, Luan C Y, Qiao M, et al. Single ion qubit with estimated coherence time exceeding one hour [J]. Nature Communication, 2021, 12: 1‒5.

[43] Gaebler J P, Tan T R, Lin Y, et al. High-fidelity universal gate set for 9Be+ ion qubits [J]. Physical Review Letters, 2016, 117: 1‒5.

[44] Kielpinski D, Monroe C, Wineland D J, et al. Architecture for a large-scale ion-trap quantum computer [J]. Nature, 2002, 417: 709‒711.

[45] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Reviews of Modern Physics, 2013, 85(3): 961.

[46] Veldhorst M, Eenink H G J, Yang C H, et al. Silicon CMOS architecture for a spin-based quantum computer [J]. Nature Communications, 2017, 8: 1‒5.

[47] Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569: 532‒536.

[48] Watson T F, Philips S G J, Kawakami E, et al. A programmable two-qubit quantum processor in silicon [J]. Nature, 2018, 555: 633‒637.

[49] He Y, Gorman S K, Kranz D, et al. A two-qubit gate between phosphorus donor electrons in silicon [J]. Nature, 2019, 571: 371‒375.

[50] Philips S G J, Mądzik M T, Amitonov S V, et al. Universal control of a six-qubit quantum processor in silicon [EB/OL]. (2022-02-18)[2022-05-15]. https: //arxiv.org/abs/2202.09252.
Philips S G J, Mądzik M T, Amitonov S V, et al. Universal control of a six-qubit quantum processor in silicon [EB/OL]. (2022-02-18) [2022-05-15]. 链接1

[51] Yang C H, Leon R C C, Hwang J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin [J]. Nature, 2020, 580: 350‒354.

[52] Petit L, Eenink H G J, Russ M, et al. Universal quantum logic in hot silicon qubits [J]. Nature, 2020, 580: 355‒359.

[53] Xue X, Patra B, Dijk J P G, et al. CMOS-based cryogenic control of silicon quantum circuits [J]. Nature, 2021, 593: 205‒210.

[54] Browaeys A, Lahaye T. Many-body physics with individually controlled Rydberg atoms [J]. Nature Physics, 2020, 16: 132‒142.

[55] Kaufman A M, Ni K K. Quantum science with optical tweezer arrays of ultracold atoms and molecules [J]. Nature Physics, 2021, 17: 1324‒1333.

[56] Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead [J]. Science, 2018, 362(6412): 1‒5.

[57] Wu Y, Liu W Q, Geng J P, et al. Observation of parity-time symmetry breaking in a single-spin system [J]. Science, 2019, 364(6443): 878‒880.

[58] Vandersypen L M K, Chuang I L. NMR techniques for quantum control and computation [J]. Reviews of Modern Physics, 2005, 76(4): 1037‒1040.

[59] Li J, Luo Z H, Xin T, et al. Experimental implementation of efficient quantum pseudorandomness on a 12-spin system [J]. Physical Review Letters, 2019, 123(3): 1‒5.

[60] Yuan H Y, Cao Y S, Kamra A, et al. Quantum magnonics: When magnon spintronics meets quantum information science [J]. Physics Reports, 2022, 965, 1‒74.

[61] Lachance-Quirion D, Wolski S P, Tabuchi Y, et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit [J]. Science, 2020, 367(6476): 425‒428.

[62] Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation [J]. Reviews of Modern Physics, 2008, 80: 1083‒1086.

相关研究