期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2022年 第24卷 第6期 doi: 10.15302/J-SSCAE-2022.06.010

我国放射性药物创新体系发展战略研究

1. 中国工程物理研究院核物理与化学研究所,四川绵阳621900;

2. 中国工程院物理研究院研究生院,北京100088;

3. 中国工程物理研究院,北京100088

资助项目 :中国工程院咨询项目“国家核医疗健康产业发展战略研究”(2021-HZ-03);国家国防科技工业局核能开发项目(20201192-1) 收稿日期: 2022-09-09 修回日期: 2022-10-19 发布日期: 2022-11-05

下一篇 上一篇

摘要

核医学在多种疾病的诊疗及预后判断方面发挥着不可替代的作用;放射性药物(放药)是核医学发展的基石,相应体系化发展有助于加快放药创新与应用,保障人民身体健康。本文深入调研了数十年来放药研究方向的文献,实地走访了国内10 余家核医疗相关高校、研究院所、医院及企业,以邀请专家开展咨询交流与行业研讨等方式,相对全面地掌握了放药研制和应用领域的发展态势与格局。在分析国外放药发展现状、技术水平及趋势的基础上,总结了我国放药发展的基本情况并辨识了面临的迫切问题;从技术研发体系、技术监管体系两方面阐述了重点建设内容,提出了放药靶点研究及靶向结构开发,新型放射性标记,放药自动化、智能化、规模化可控制备,放药辐射剂量检测及评价、放药联合诊疗等关键技术突破点。研究建议,以临床为导向鼓励多学科交叉融合的创新发展,加快放药技术创新体系建设,加强放药研发专业化人才队伍建设,以此促进核医学水平的整体提升。

参考文献

[ 1 ] 朱华, 杨志‍‍. 肿瘤新型放射性药物的研发与应用 [J ]‍. 中华核医学与分子影像杂志, 2021 , 41 1 0:577‒579‍.

[ 2 ] Zheng R, Zhang S, Zeng H, al et‍. Cancer incidence and mortality in China, 2016 [J]‍. Journal of the National Cancer Center, 2022, 1(2): 1‒9‍.

[ 3 ] 高洁 , 郑小北 , 王红亮 , 等‍ . 放射性治疗药物的发展现状与展望 [J]‍. 同位素 , 2022 , 35 3 : 151 ‒ 163 ‍.

[ 4 ] Hofman M S, Violet J, Hicks R J, al et‍. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study [J]‍. Lancet Oncology, 2018, 19(6): 825‒833‍.

[ 5 ] Food and Drug Administration‍. FDA-approved drugs [EB/OL]. (2022-03-31)[2022-08-20]‍. https://www‍.accessdata‍.fda‍.gov/scripts/cder/daf/‍. 链接1

[ 6 ] 田佳乐 , 贾红梅‍ . 99m Tc-放射性药物的现状和展望 [J]‍. 同位素 , 2018 , 31 3 : 143 ‒ 156 ‍.

[ 7 ] Hennrich U, Benesova M‍. [68Ga]Ga-DOTA-TOC: The first FDA-approved 68Ga-radiopharmaceutical for PET imaging [J]‍. Pharmaceuticals (Basel), 2020, 13(3): 38‒50‍.

[ 8 ] Zinzani P L, Tani M, Fanti S, al et‍. A phase 2 trial of fludarabine and mitoxantrone chemotherapy followed by Yttrium-90 ibritumomab tiuxetan for patients with previously untreated, indolent, nonfollicular, non-Hodgkin lymphoma [J]‍. Cancer, 2008, 112(4): 856‒862‍.

[ 9 ] Ciochetto C, Botto B, Passera R, al et‍. Yttrium-90 ibritumomab tiuxetan (Zevalin) followed by BEAM (Z-BEAM) conditioning regimen and autologous stem cell transplantation (ASCT) in relapsed or refractory high-risk B-cell non-Hodgkin lymphoma (NHL): A single institution Italian experience [J]‍. Ann Hematol, 2018, 97(9): 1619‒1626‍.

[10] Hennrich U, Kopka K‍. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy [J]‍. Pharmaceuticals (Basel), 2019, 12(3): 114‒122‍.

[11] Emmett L, Crumbaker M, Ho B, al et‍. Results of a prospective phase 2 pilot trial of 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer including imaging predictors of treatment response and patterns of progression [J]‍. Clinical Genitourinary Cancer, 2019, 17(1): 15‒22‍.

[12] Calais J, Czernin J, Thin P, al et‍. Safety of PSMA-targeted molecular radioligand therapy with 177Lu-PSMA-617: Results from the prospective multicenter phase 2 trial RESIST-PC (NCT03042312) [J]‍. Journal of Nuclear Medicine, 2021, 62(10): 1447‒1456‍.

[13] National Institutes of Health‍. Clinicaltrials database [EB/OL]‍. (2022-03-31)[2022-08-20]‍. https://clinicaltrials‍.gov‍. 链接1

[14] National Institutes of Health‍. NIH database [EB/OL]‍. (2022-03-31)[2022-08-20]‍. https://www‍.nih‍.gov‍. 链接1

[15] Ulaner G, Sobol N, O´Donoghue J, al et‍. Synthesis, preclinical analysis, and first-in-human phase I imaging of 89Zr-DFO-daratumumab for CD38 targeted imaging of myeloma [J]‍. Clinical Lymphoma Myeloma and Leukemia, 2019, 19(10): 1‒10‍.

[16] Ranjbar H, Bahrami-Samani A, Beiki D, al et‍. Evaluation of 153Sm/177Lu-EDTMP mixture in wild-type rodents as a novel combined palliative treatment of bone pain agent [J]‍. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303: 71‒79‍.

[17] Atallah E L, Orozco J J, Craig M, al et‍. A phase 2 study of Actinium-225 (225Ac)-Lintuzumab in older patients with untreated Acute Myeloid Leukemia (AML)-Interim analysis of 1‍.5 µci/Kg/dose [J]‍. Blood, 2018, 132(1): 1457‒1467‍.

[18] Stallons T A R, Saidi A, Tworowska I, al et‍. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model [J]‍. Molecular Cancer Therapeutics, 2019, 18(5): 1012‒1021‍.

[19] Meredith R, Torgue J, Shen S, al et‍. Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab [J]‍. Journal of Nuclear Medicine, 2014, 55(10): 1636‒1642‍.

[20] Schneider H, Deweid L, Avrutina O, al et‍. Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates [J]‍. Analytical Biochemistry, 2020, 595: 113615‒113625‍.

[21] Morais M, Ma M T‍. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals [J]‍. Drug Discovery Today Technologies, 2018, 30: 91‒104‍.

[22] Sadiki A, Kercher E M, Lu H, al et‍. Site-specific bioconjugation and convergent click chemistry enhances antibody-chromophore conjugate binding efficiency [J]‍. Photochemistry and Photobiology, 2020, 96(3): 596‒603‍.

[23] Roberts J T, Patel K R, W‍ Barb A. Site-specific N-glycan analysis of antibody-binding Fc γ receptors from primary human monocytes [J]‍. Molecular & Cellular Proteomics, 2020, 19(2): 362‒374‍.

[24] Li T, Li C, Quan D N, al et‍. Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies [J]‍. Carbohydrate Research, 2018, 458‒459: 77‒84‍.

[25] Hwang D, Rader C‍. Site-specific antibody-drug conjugates in triple variable domain fab format [J]‍. Biomolecules, 2020, 10(5): 764‒776‍.

[26] Yamada K, Ito Y‍. Recent chemical approaches for site-specific conjugation of native antibodies: Technologies toward next-generation antibody-drug conjugates [J]‍. Chembiochem, 2019, 20(21): 2729‒2737‍.

[27] Agarwal P, R‍ Bertozzi C. Site-specific antibody-drug conjugates: The nexus of biciorthogonal chemistry, protein engineering, and drug development [J]‍. Bioconjugate Chemistry, 2015, 26(2): 176‒192‍.

[28] Zhou Q, Stefano J E, Manning C, al et‍. Site-specific antibody-drug conjugation through glycoengineering [J]‍. Bioconjugate Chemistry, 2014, 25(3): 510‒520‍.

[29] Nisonoff A, Wissler F C, N‍ Lipman L. Properties of the major component of a peptic digest of rabbit antibody [J]‍. Science, 1960, 132(3441): 1770‒1771‍.

[30] 张迪 , 陈虞梅 , 赵海涛 , 等‍ . 免疫PET显像在肿瘤诊疗中的研究进展 [J]‍. 中华核医学与分子影像杂志 , 2022 , 42 2 : 113 ‒ 117 ‍.

[31] Labrijn A F, Janmaat M L, Reichert J M, al et‍. Bispecific antibodies: A mechanistic review of the pipeline [J]‍. Nature Reviews Drug Discovery, 2019, 18(8): 585‒608‍.

[32] Frost S H, Frayo S L, Miller B W, al et‍. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models [J]‍. PLoS One, 2015, 10(3): 1‒16‍.

[33] Meyer J P, Tully K M, Jackson J, al et‍. Bioorthogonal masking of circulating antibody-TCO groups using tetrazine-functionalized dextran polymers [J]‍. Bioconjugate Chemistry, 2018, 29(2): 538‒545‍.

[34] Poty S, Carter L M, Mandleywala K, al et‍. Leveraging bioorthogonal click chemistry to improve 225Ac-radioimmunotherapy of pancreatic ductal adenocarcinoma [J]‍. Clinical Cancer Research, 2019, 25(2): 868‒880‍.

[35] Schoffelen R, Woliner-van der Weg W, Visser E P, al et‍. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer [J]‍. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(8): 1593‒602‍.

[36] 彭述明 , 杨宇川 , 谢翔 , 等‍ . 我国堆照医用同位素生产及应用现状与展望 [J]‍. 科学通报 , 2020 , 65 32 : 3526 ‒ 3537 ‍.

[37] 国家药品监督管理局 . 数据查询 [EBOL]. 2022-10-10 [ 2022-10-20 ]. https:www.nmpa.gov.cndatasearch .

[38] 汪静‍ . FAPI有望开创核素靶向诊疗的新时代 [J]‍. 中华核医学与分子影像杂志 , 2021 , 41 12 : 705 ‒ 708 ‍.

[39] Mao Y, Du S, Ba J, al et‍. Using dynamic 99mTc-GSA SPECT/CT fusion images for hepatectomy planning and postoperative liver failure prediction [J]‍. Annals of Surgical Oncology, 2015, 22(4): 1301‒1307‍.

[40] Li N, Wang X, Lin B, al et‍. Clinical evaluation of 99mTc-rituximab for sentinel lymph node mapping in breast cancer patients [J]‍. Journal of Nuclear Medicine, 2016, 57(8): 1214‒1220‍.

[41] Shao G, Gu W, Guo M, al et‍. Clinical study of 99mTc-3P-RGD2 peptide imaging in osteolytic bone metastasis [J]‍. Oncotarget, 2017, 8(43): 75587‒75596‍.

[42] 施婧琦 , 武新宇 , 李博 , 等‍ . 定量 99m Tc-HYNIC-PSMA SPECTCT诊断前列腺癌的价值 [J]‍. 中华核医学与分子影像杂志 , 2022 , 42 3 : 149 ‒ 153 ‍.

[43] Zhang J, Lang L, Zhu Z, al et‍. Clinical translation of an Albumin-binding PET radiotracer 68Ga-NEB [J]‍. Journal of Nuclear Medicine, 2015, 56(10): 1609‒1614‍.

[44] Hu J, Li H, Sui Y, al et‍. Current status and future perspective of radiopharmaceuticals in China [J]‍. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49: 2514‒2530‍.

[45] Wang Q, Wang Y, Ding J, al et‍. A bioorthogonal system reveals antitumour immune function of pyroptosis [J]‍. Nature, 2020, 579 (7799): 421‒426‍.

[46] 王正 , 徐建锋 , 蔡玉婷 , 等‍ . 中国放射性药物的现状及发展趋势 [J]‍. 中国食品药品监管 , 2018 7 : 44 ‒ 49 ‍.

[47] Zhang X, Ruan Q, Jiang Y, al et‍. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging [J]‍. Translational Oncology, 2021, 14(1): 100966‒100972‍.

相关研究