期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第3期 doi: 10.15302/J-SSCAE-2023.03.010

海底不稳定性研究进展及展望

1. 中国科学院南海海洋研究所,广州 510301;

2. 中国科学院边缘海与大洋地质重点实验室,广州 510301;

3. 中国科学院大学,北京 100049

资助项目 :中国工程院咨询研究项目“琼东南盆地海底地质灾害风险应对战略咨询研究”(21-HN-ZD-02);广东省基础与应用基础研究基金 (2020B1515020016) 收稿日期: 2023-03-28 修回日期: 2023-05-06 发布日期: 2023-06-15

下一篇 上一篇

摘要

海底不稳定性及次生海底地质灾害广泛存在于海洋之中,对海岸港口设施、海洋钻井平台、海底管道光缆等海底基础建设颇具威胁。但目前对海底不稳定性的成因机制与主控因素仍知之甚少,为加深对海底不稳定性的认识,本文回顾了海底不稳定性研究进展,梳理了海底不稳定性及次生海底地质灾害的主要类别、全球分布情况和地球物理识别特征,归纳了目前海底不稳定性研究的定量分析方法,进一步分析了其成因机制、控制因素及工程地质灾害风险,探讨了海底陆坡失稳演化过程试验模拟技术的适用范畴与技术瓶颈。最后,从海底不稳定性的致灾机理研究、多源数据智能分析和海底失稳立体监测3 个维度提出了未来海底不稳定性研究的发展方向与对策建议,以期为海底不稳定性的模拟、预测和预警等工作提供指导性建议。

图片

图1

图2

图3

参考文献

[ 1 ] 周守为 , 李清平 , 朱海山 , 等‍‍ . 海洋能源勘探开发技术现状与展望 [J]‍. 中国工程科学 , 2016 , 18 2 : 19 ‒ 31 ‍.
Zhou S W , Li Q P , Zhu H S , al e t ‍. The current state and future of offshore energy exploration and development technology [J]‍. Strategic Study of CAE , 2016 , 18 2 : 19 ‒ 31 ‍.

[ 2 ] Zhang Y L, Zhao Y, Yuan Z X‍. Effect of seabed instability on pile soil pressure [J]‍. Journal of Physics Conference Series, 2020, 1624(4): 042071‍.

[ 3 ] Barends F, Spierenburg S‍. Interaction between ocean waves and sea-bed [C]‍. Yokahama: The International Conference on Geotechnical Engineering for Coastal Development: Theory and Practice on Soft Ground, 1991.

[ 4 ] Rahman A, De Vernal A‍. Surface oceanographic changes in the eastern Labrador Sea: Nannofossil record of the last 31, 000 years [J]‍. Marine Geology, 1994, 121(3‒4): 247‒263‍.

[ 5 ] Saxov S‍. Marine slides—Some introductory remarks [J]‍. Marine Slides and Other Mass Movements, 1982, 6: 1‒7‍.

[ 6 ] Prior D B, M‍ Coleman J. Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta [J]‍. Marine Slides and Other Mass Movements, 1982, 6: 21‒49‍.

[ 7 ] 胡光海 , 刘忠臣 , 孙永福 , 等‍ . 海底斜坡土体失稳的研究进展 [J]‍. 海岸工程 , 2004 , 23 1 : 63 ‒ 72 ‍.
Hu G H , Liu Z C , Sun Y F , al e t ‍. Advances in the research on sediment failure on submarine slope [J]‍. Coastal Engineering , 2004 , 23 1 : 63 ‒ 72 ‍.

[ 8 ] Guo X S, Nian T K, Wang Z T, al et‍. Low-temperature rheological behavior of submarine mudflows [J]‍. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2020, 146(2): 04019043‍.

[ 9 ] 贾永刚 , 王振豪 , 刘晓磊 , 等‍ . 海底滑坡现场调查及原位观测方法研究进展 [J]‍. 中国海洋大学学报自然科学版 , 2017 , 47 10 : 61 ‒ 72 ‍.
Jia Y G , Wang Z H , Liu X L , al e t ‍. The research progress of field investigation and in-situ observation methods for submarine landslide [J]‍. Periodical of Ocean University of China , 2017 , 47 10 : 61 ‒ 72 ‍.

[10] Vanneste M, Madshus C, Socco V L, al et‍. On the use of the Norwegian Geotechnical Institute´s prototype seabed-coupled shear wave vibrator for shallow soil characterization-I‍. Acquisition and processing of multimodal surface waves [J]‍. Geophysical Journal International, 2011, 185(1): 221‒236‍.

[11] Carpenter G B, C‍ Mccarthy J. Hazards analysis on the Atlantic outer continental shelf [C]‍. Houston: The Offshore Technology Conference, 1980‍.

[12] Fleischer P, Orsi T, Richardson M, al et‍. Distribution of free gas in marine sediments: A global overview [J]‍. Geo-Marine Letters, 2001, 21: 103‒122‍.

[13] Chen Y, Deng B, Zhang J‍. Shallow gas in the Holocene mud wedge along the inner East China Sea shelf [J]‍. Marine and Petroleum Geology, 2020, 114: 104233‍.

[14] Hovland M, G‍ Judd A. Seabed pockmarks and seepages: Impact on geology, biology and the marine environment [M]‍. London: Graham & Trotman London, 1988‍.

[15] Hu Y, Li H D, Xu J‍. Shallow gas accumulation in a small estuary and its implications: A case history from in and around Xiamen Bay [J]‍. Geophysical Research Letters, 2012, 39(24): 1‒6‍.

[16] Coughlan M, Roy S, O´sullivan C, al et‍. Geological settings and controls of fluid migration and associated seafloor seepage features in the north Irish Sea [J]‍. Marine and Petroleum Geology, 2021, 123: 104762‍.

[17] Flury S, Røy H, Dale A W, al et‍. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark) [J]‍. Geochimica et Cosmochimica Acta, 2016, 188: 297‒309‍.

[18] Zhou Q K, Sun Y F, Song Y P, al et‍. Distribution of shallow gas at an offshore platform site in Bohai Bay and its genetic mechanism [J]‍. Geological Bulletin of China, 2021, 40(2‒3): 298‒304‍.

[19] Sloan Jr E D, A‍ Koh C. Clathrate hydrates of natural gases [M]‍. Boca Raton: CRC Press, 2007‍.

[20] 姚伯初‍ . 南海北部陆缘天然气水合物初探 [J]‍. 海洋地质与第四纪地质 , 1998 , 18 4 : 12 ‒ 19 ‍.
Yao B C‍ . Preliminary study on gas hydrate in northern continental margin of South China Sea [J]‍. Marine Geology Quaternary Geology , 1998 , 18 4 : 12 ‒ 19 ‍.

[21] 吴能友 , 杨胜雄 , 王宏斌 , 等‍ . 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系 [J]‍. 地球物理学报 , 2009 , 52 6 : 1641 ‒ 1650 ‍.
Wu N Y , Yang S X , Wang H B , al e t ‍. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea [J]‍. Chinese Journal of Geophysics , 2009 , 52 6 : 1641 ‒ 1650 ‍.

[22] 景鹏飞 , 胡高伟 , 卜庆涛 , 等‍ . 天然气水合物地球物理勘探技术的应用及发展 [J]‍. 地球物理学进展 , 2019 , 34 5 : 2046 ‒ 2064 ‍.
Jing P F , Hu G W , Bu Q T , al e t ‍. Application and development of geophysical technology in gas hydrate exploration [J]‍. Progress in Geophysics , 2019 , 34 5 : 2046 ‒ 2064 ‍.

[23] 宋海斌 , 耿建华 , Wang H K , 等‍ . 南海北部东沙海域天然气水合物的初步研究 [J]‍. 地球物理学报 , 2001 , 44 5 : 687 ‒ 695 ‍.
Song H B , Geng J H , Wang H K , al e t ‍. A preliminary study of gas hydrates in Dongsha region north of South China Sea [J]‍. Chinese Journal of Geophysics , 2001 , 44 5 : 687 ‒ 695 ‍.

[24] 吴时国 , 姚根顺 , 董冬冬 , 等‍ . 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征 [J]‍. 石油学报 , 2008 , 29 3 : 324 ‒ 328 ‍.
Wu S G , Yao G S , Dong D D , al e t ‍. Geological structures for forming gas hydrate reservoir in the huge deepwater gas field of the northern South China Sea [J]‍. Acta Petrolei Sinica , 2008 , 29 3 : 324 ‒ 328 ‍.

[25] Priest J, Sultaniya A, Clayton C‍. Impact of hydrate formation and dissociation on the stiffness of a sand [C]‍. Edinburgh: The 7th International Conference on Gas Hydrates, 2011‍.

[26] Briaud J L, Chaouch A‍. Hydrate melting in soil around hot conductor [J]‍. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(7): 645‒653‍.

[27] E‍ Hunt J. Determining the provenance, recurrence, magnitudes and failure mechanisms of submarine landslides from the Moroccan Margin and Canary Islands using distal turbidite records [D]‍. Southampton: University of Southampton (Doctoral dissertation), 2012‍.

[28] Planke S, Svensen H, Hovland M, al et‍. Mud and fluid migration in active mud volcanoes in Azerbaijan [J]‍. Geo-Marine Letters, 2003, 23: 258‒268‍.

[29] J‍ Kopf A. Significance of mud volcanism [J]‍. Reviews of geophysics, 2002, 40(2): 1‒52‍.

[30] 何家雄 , 祝有海 , 翁荣南 , 等‍ . 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系 [J]‍. 地球科学中国地质大学学报 , 2010 , 35 1 : 75 ‒ 86 ‍.
He J X , Zhu Y H , Weng R N , al e t ‍. Characters of north-west mud diapirs volcanoes in South China Sea and relationship between them and acumulation and migration of oil and gas [J]‍. Earth Science , 2010 , 35 1 : 75 ‒ 86 ‍.

[31] Judd A, Hovland M‍. Seabed fluid flow: The impact of geology, biology and the marine environment [M]‍. Oxford: Great Britain at the Alden Press, 2007‍.

[32] Chen S C, Hsu S K, Wang Y, al et‍. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan [J]‍. Journal of Asian Earth Sciences, 2014, 92: 201‒214‍.

[33] I‍ Dimitrov L. Mud volcanoes—The most important pathway for degassing deeply buried sediments [J]‍. Earth-Science Reviews, 2002, 59(1‒4): 49‒76‍.

[34] Talukder A R, Bialas J, Klaeschen D, al et‍. High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin [J]‍. Marine Geology, 2007, 241(1‒4): 33‒43‍.

[35] Franek P, Mienert J, Buenz S, al et‍. Character of seismic motion at a location of a gas hydrate‐bearing mud volcano on the SW Barents Sea margin [J]‍. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6159‒6177‍.

[36] Wan Z, Luo J, Yang X, al et‍. The thermal effect of submarine mud volcano fluid and its influence on the occurrence of gas hydrates [J]‍. Journal of Marine Science and Engineering, 2022, 10(6): 832‍.

[37] King L H, Maclean B‍. Pockmarks on the Scotian shelf [J]‍. Geological Society of America Bulletin, 1970, 81(10): 3141‒3148‍.

[38] Hovland M, Talbot M R, Qvale H, al et‍. Methane-related carbonate cements in pockmarks of the North Sea [J]‍. Journal of Sedimentary Research, 1987, 57(5): 881‒892‍.

[39] Hovland M, Gardner J V, Judd A‍. The significance of pockmarks to understanding fluid flow processes and geohazards [J]‍. Geofluids, 2002, 2(2): 127‒136‍.

[40] Ercilla G‍. Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain) [J]‍. Marine and Petroleum geology, 1996, 13(2): 253‒261‍.

[41] Baltzer A, Ehrhold A, Rigolet C, al et‍. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders [J]‍. Geo-Marine Letters, 2014, 34: 215‒230‍.

[42] Riboulot V, Imbert P, Cattaneo A, al et‍. Fluid escape features as relevant players in the enhancement of seafloor stability? [J]‍. Terra Nova, 2019, 31(6): 540‒548‍.

[43] Cox D R, Knutz P C, Campbell D C, al et‍. Geohazard detection using 3D seismic data to enhance offshore scientific drilling site selection [J]‍. Scientific Drilling, 2020, 28: 1‒27‍.

[44] Faugères J C, Gonthier E, Mulder T, al et‍. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic) [J]‍. Marine Geology, 2002, 182(3‒4): 279‒302‍.

[45] Li W, Alves T M, Wu S, al et‍. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]‍. Earth and Planetary Science Letters, 2016, 451: 272‒284‍.

[46] Cattaneo A, Correggiari A, Marsset T, al et‍. Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves [J]‍. Marine Geology, 2004, 213(1‒4): 121‒148‍.

[47] Hill P, Moran K, Blasco S‍. Creep deformation of slope sediments in the Canadian Beaufort Sea [J]‍. Geo-Marine Letters, 1982, 2: 163‒170‍.

[48] Shillington D J, Seeber L, Sorlien C C, al et‍. Evidence for widespread creep on the flanks of the Sea of Marmara transform basin from marine geophysical data [J]‍. Geology, 2012, 40(5): 439‒442‍.

[49] Putans V A, Merklin L R, V‍ Levchenko O. Sediment waves and other forms as evidence of geohazards in Caspian Sea [J]‍. International Journal of Offshore and Polar Engineering, 2010, 20(4): 1‒4‍.

[50] Fernández-Salas L, Lobo F, Sanz J, al et‍. Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin [J]‍. Marine Geology, 2007, 243(1‒4): 31‒56‍.

[51] Gonthier E, Cirac P, Faugeres J, al et‍. Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay) [J]‍. Scientia Marina, 2006, 70(1): 89‒100‍.

[52] Saint-Ange F, Kuus P, Blasco S, al et‍. Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada [J]‍. Marine Geology, 2014, 355: 136‒149‍.

[53] Lee S, Chough S, Back G, al et‍. Chirp (2-7 kHz) echo characters of the South Korea Plateau, East Sea: Styles of mass movement and sediment gravity flow [J]‍. Marine Geology, 2002, 184(3‒4): 227‒247‍.

[54] 王龙樟 , 姚永坚 , 林卫兵 , 等‍ . 南海南部沉积物波:软变形及其触发机制 [J]‍. 地球科学 , 2018 , 43 10 : 3462 ‒ 3470 ‍.
Wang L Z , Yao Y J , Lin W B , al e t ‍. Sediment waves in the south of South China Sea: Soft sediment deformation and lts triggering mechanism [J]‍. Earth Science , 2018 , 43 10 : 3462 ‒ 3470 ‍.

[55] Qiao S, Su M, Kuang Z, al et‍. Canyon-related undulation structures in the Shenhu area, northern South China Sea [J]‍. Marine Geophysical Research, 2015, 36: 243‒252‍.

[56] Li J, Li W, Alves T M, al et‍. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location [J]‍. Marine Geology, 2019, 413: 99‒111‍.

[57] Sun Q, Leslie S‍. Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea [J]‍. Marine and Petroleum Geology, 2020, 112: 104111‍.

[58] Li W, Alves T M, Rebesco M, al et‍. The Baiyun Slide Complex, South China Sea: A modern example of slope instability controlling submarine-channel incision on continental slopes [J]‍. Marine and Petroleum Geology, 2020, 114: 104231‍.

[59] 王大伟 , 吴时国 , 李春峰 , 等‍ . 晚中新世红河断裂走滑反转事件的海底滑坡证据 [J]‍. 中国科学: 地球科学 , 2016 , 46 10 : 1349 ‒ 1357 ‍.
Wang D W , Wu S G , Li C F , al e t ‍. Submarine slide evidence for late Miocene strike-slip reversal of the Red River Fault [J]‍. Science China Earth Sciences , 2016 , 46 10 : 1349 ‒ 1357 ‍.

[60] Wu S, Wang D, Völker D‍. Deep-sea geohazards in the South China Sea [J]‍. Journal of Ocean University of China, 2018, 17: 1‒7‍.

[61] Mosher D C, Campbell D, Gardner J, al et‍. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic [J]‍. Marine Geology, 2017, 393: 245‒259‍.

[62] Vanneste M, Sultan N, Garziglia S, al et‍. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations [J]‍. Marine Geology, 2014, 352: 183‒214‍.

[63] Huhn K, Arroyo M, Cattaneo A, al et‍. Modern submarine landslide complexes: A short review [J]‍. Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles, 2019, 246: 181‒200‍.

[64] Li W, Alves T M, Urlaub M, al et‍. Morphology, age and sediment dynamics of the upper headwall of the Sahara Slide Complex, Northwest Africa: Evidence for a large Late Holocene failure [J]‍. Marine Geology, 2017, 393: 109‒123‍.

[65] 王大伟 , 吴时国 , 吕福亮 , 等‍ . 南海深水块体搬运沉积体系及其油气勘探意义 [J]‍. 中国石油大学学报自然科学版 , 2011 , 35 5 : 14 ‒ 19 ‍.
Wang D W , Wu S G , Lyu F L , al e t ‍. Mass transport deposits and its significance for oil gas exploration in deep-water regions of South China Sea [J]‍. Journal of China University of Petroleum Edition of Natural Science , 2011 , 35 5 : 14 ‒ 19 ‍.

[66] Li W, Wu S, Völker D, al et‍. Morphology, seismic characterization and sediment dynamics of the Baiyun Slide Complex on the northern South China Sea margin [J]‍. Journal of the Geological Society, 2014, 171(6): 865‒877‍.

[67] 吴时国 , 陈珊珊 , 王志君 , 等‍ . 大陆边缘深水区海底滑坡及其不稳定性风险评估 [J]‍. 现代地质 , 2008 , 22 3 : 430 ‒ 437 ‍.
Wu S G , Chen S S , Wang Z J , al e t ‍. Submarine landslide and risk evaluation on its instability in the deepwater continental margin [J]‍. Geoscience , 2008 , 22 3 : 430 ‒ 437 ‍.

[68] Locat J, Leroueil S, Locat A, al et‍. Weak layers: Their definition and classification from a geotechnical perspective [J]‍. Submarine Mass Movements and Their Consequences, 2014, 37: 3‒12‍.

[69] Urgeles R, Camerlenghi A‍. Submarine landslides of the Mediterranean Sea: Trigger mechanisms, dynamics, and frequency‐magnitude distribution [J]‍. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2600‒2618‍.

[70] Smith D E, Harrison S, T‍ Jordan J. Sea level rise and submarine mass failures on open continental margins [J]‍. Quaternary Science Reviews, 2013, 82: 93‒103‍.

[71] Li W, Krastel S, Alves T M, al et‍. The Agadir Slide offshore NW Africa: Morphology, emplacement dynamics, and potential contribution to the Moroccan Turbidite System [J]‍. Earth and Planetary Science Letters, 2018, 498: 436‒449‍.

[72] Song J, Alves T, Omosanya K, al et‍. Tectonic evolution of strike-slip zones on continental margins and their impact on the development of submarine landslides (Storegga Slide, northeast Atlantic) [J]‍. Geological Society of America Bulletin, 2020, 132(11‒12): 2397‒2414‍.

[73] 朱彬‍ . 基于可靠度理论的海床稳定性分析及评价方法 [D]‍. 大连 : 大连理工大学博士学位论文 , 2021 ‍.
Zhu B‍ . Analysis and evaluation method of seabed stability based on reliability theory [D]‍. Dalian : University of Technology Doctoral dissertation , 2021 ‍.

[74] Mosher D C, J‍ Piper D. Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area [J]‍. Submarine Mass Movements and Their Consequences, 2007, 27: 77‒88‍.

[75] Harbitz C B, Løvholt F, Pedersen G, al et‍. Mechanisms of tsunami generation by submarine landslides: A short review [J]‍. Norwegian Journal of Geology / Norsk Geologisk Forening, 2006, 86(3): 255‒264‍.

[76] Hsu S K, Kuo J, Lo C L, al et‍. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan [J]‍. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(6): 767‒772‍.

[77] M‍ Duncan J. State of the art: Limit equilibrium and finite-element analysis of slopes [J]‍. Journal of Geotechnical Engineering, 1996, 122(7): 577‒596‍.

[78] Fellenius W‍. Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen [M]‍. California: W‍. Ernst & Sohn, 1927‍.

[79] Henkel D‍. The role of waves in causing submarine landslides [J]‍. Géotechnique, 1970, 20(1): 75‒80‍.

[80] 霍沿东 , 年廷凯 , 焦厚滨 , 等‍ . 基于极限分析上限方法的海底斜坡地震稳定性 [J]‍. 工程地质学报 , 2019 , 27 2 : 408 ‒ 414 ‍.
Huo Y D , Nian T K , Jiao H B , al e t ‍. Seismic stablity of submarine clay slopes based on upper bound approach [J]‍. Journal of Engineering Geology , 2019 , 27 2 : 408 ‒ 414 ‍.

[81] Shan Z, Wu H, Ni W, al et‍. Recent technological and methodological advances for the investigation of submarine landslides [J]‍. Journal of Marine Science and Engineering, 2022, 10(11): 1‒16‍.

[82] Dey R, Hawlader B, Phillips R, al et‍. Numerical modelling of submarine landslides with sensitive clay layers [J]‍. Géotechnique, 2016, 66(6): 454‒468‍.

[83] Gauer P, Kvalstad T J, Forsberg C F, al et‍. The last phase of the Storegga Slide: Simulation of retrogressive slide dynamics and comparison with slide-scar morphology [J]‍. Marine and Petroleum Geology, 2005, 22(1‒2): 171‒178‍.

[84] Shire T, O´Sullivan C‍. Micromechanical assessment of an internal stability criterion [J]‍. Acta Geotechnica, 2013, 8: 81‒90‍.

[85] Jiang M, Sun C, Crosta G B, al et‍. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach [J]‍. Engineering Geology, 2015, 190: 1‒16‍.

[86] Phoon K K, V‍ Retief J. Reliability of geotechnical structures in ISO 2394 [M]‍. Boca Raton: CRC Press, 2016‍.

[87] Zhu B, Pei H, Yang Q‍. An intelligent response surface method for analyzing slope reliability based on Gaussian process regression [J]‍. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(15): 2431‒2448‍.

[88] Wu T H, Jr L M‍ Kraft. Safety analysis of slopes [J]‍. Journal of the Soil Mechanics and Foundations Division, 1970, 96(2): 609‒630‍.

[89] 马云‍ . 南海北部陆坡区海底滑坡特征及触发机制研究 [D]‍. 青岛 : 中国海洋大学博士学位论文 , 2014 ‍.
Ma Y‍ . Study of submarine landslides and trigger mechanism along the continental slope of the northern South China Sea [D]‍. Qingdao : Ocean University of China Doctoral dissertation , 2014 ‍.

[90] Zhang J, Huang H, Juang C, al et‍. Extension of Hassan and Wolff method for system reliability analysis of soil slopes [J]‍. Engineering Geology, 2013, 160: 81‒88‍.

[91] Yang S, Nadim F, F‍ Forsberg C. Probability study on submarine slope stability [J]‍. Submarine Mass Movements and Their Consequences, 2007, 27: 161‒170‍.

[92] Rodríguez-Ochoa R, Nadim F, A‍ Hicks M. Influence of weak layers on seismic stability of submarine slopes [J]‍. Marine and Petroleum Geology, 2015, 65: 247‒268‍.

[93] 王星星 , 王英民 , 高胜美 , 等‍ . 深水重力流模拟研究进展及对海洋油气开发的启示 [J]‍. 中国矿业大学学报 , 2018 , 47 3 : 588 ‒ 602 ‍.
Wang X X , Wang Y M , Gao S M , al e t ‍. Advancements of the deep-water gravity flow simulations and their implications for exploitation of marine petroleum [J]‍. Journal of China University of Mining Technology , 2018 , 47 3 : 588 ‒ 602 ‍.

[94] Nian T K, Wu H, Li D Y, al et‍. Experimental investigation on the formation process of landslide dams and a criterion of river blockage [J]‍. Landslides, 2020, 17: 2547‒2562‍.

[95] Mohrig D, Ellis C, Parker G, al et‍. Hydroplaning of subaqueous debris flows [J]‍. Geological Society of America Bulletin, 1998, 110(3): 387‒394‍.

[96] Zakeri A, Høeg K, Nadim F‍. Submarine debris flow impact on pipelines—Part I: Experimental investigation [J]‍. Coastal Engineering, 2008, 55(12): 1209‒1218‍.

[97] 胡光海‍ . 东海陆坡海底滑坡识别及致滑因素影响研究 [D]‍. 青岛 : 中国海洋大学博士学位论文 , 2010 ‍.
Hu G H‍ . Identification of submarine landslides along the continental slope of the East China Sea and analysis of factors causing submarine landslides [D]‍. Qingdao : Ocean University of China Doctoral dissertation , 2010 ‍.

[98] Acosta E A, Tibana S, De Almeida M D S S, al et‍. Centrifuge modeling of hydroplaning in submarine slopes [J]‍. Ocean Engineering, 2017, 129: 451‒458‍.

[99] Zhang J H, Wang Z B, Zhao H, al et‍. Multi-scale CFD simulation of hydrodynamics and cracking reactions in fixed fluidized bed reactors [J]‍. Applied Petrochemical Research, 2015, 5: 255‒261‍.

相关研究