期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第6期 doi: 10.15302/J-SSCAE-2023.07.020

矿物浮选吸附平衡模型构建与应用:精准解析矿物表面离子 / 药剂特征吸附

中南大学资源加工与生物工程学院,长沙 410083

资助项目 :国家自然科学基金项目(U1704252, 52104286) 收稿日期: 2022-12-24 修回日期: 2023-01-11 发布日期: 2023-07-24

下一篇 上一篇

摘要

矿物浮选吸附平衡模型是准确描述矿物浮选过程中所涉及的矿物表面离子 / 药剂吸附平衡的数学模型,首次实现了矿物表面位点与浮选药剂吸附作用亲和性的量化解析。传统浮选理论对矿物表面作用位点缺乏科学描述,难以阐明浮选药剂的吸附作用能力及平衡状态,新浮选药剂体系开发多以“试错法”“复配法”等经验性方法为主。药剂选择性吸附作为浮选作业的核心机制,若不能准确预测其在各矿物表面的吸附行为,将严重限制浮选工艺智能化控制的发展。本文详细论述了矿物浮选吸附平衡模型的构建原理,以赤铁矿 ‒ 石英和一水硬铝石 ‒ 高岭石两个浮选体系为例,通过对少量实验数据的拟合计算,解析出矿物表面活性位点密度Ns、加 / 去质子反应常数Kt1/Kt2、药剂吸附常数Kf等矿物浮选特征常数。将解析的矿物浮选特征常数代入到平衡模型中,预测出各条件下矿物表面电性、离子及浮选药剂的吸附量,通过零电点、实验及测试等方法验证了可靠性,形成了矿物浮选过程预测系统的内核算法。该算法对各条件下每种矿物药剂吸附的初步准确预测,可在一定程度上反映其可浮性趋势,有助于缩短浮选工艺开发周期,对矿物表面药剂吸附机理研究、浮选药剂分子设计、浮选工艺流程优化及智能控制等具有重要意义。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] 印万忠‍‍. 浮选工艺流程的变革与优化 [C]‍. 合肥: (第五届)中国矿业科技大会, 2014‍.
Yin W Z‍. Reform and optimization of flotation process [C]‍. Hefei: 2014 (The Fifth) China Mining Science and Technology Conference, 2014‍.

[ 2 ] 孙传尧, 周俊武, 贾木欣, 等‍. 基因矿物加工工程研究 [J]‍. 有色金属 (选矿部分), 2018 (1):1‒7‍.
Sun C Y, Zhou J W, Jia M X, et al‍. Research on genetic mineral processing engineering [J]‍. Nonferrous Metals (Mineral Processing Section), 2018 (1): 1‒7‍.

[ 3 ] Shean B J, Cilliers J J‍. A review of froth flotation control [J]‍. International Journal of Mineral Processing, 2011, 100: 57‒71‍.

[ 4 ] 张卿, 饶明生, 张林龙, 等‍. 复杂高品位硫氧混合铜浮选智能控制技术 [J]‍. 矿冶, 2021, 30(4): 129‒134
Zhang Q, Rao M S, Zhang L L, et al‍. Intelligent control technology of complex high-grade sulfur-oxygen mixed copper flotation [J]‍. Mining & Metallurgy, 2021, 30(4): 129‒134‍.

[ 5 ] 王旭, 赵博实‍. 铜浮选流程智能控制系统设计与应用 [J]‍. 有色冶金设计与研究, 2019, 40(5): 5‒9‍.
Wang X, Zhao B S‍. Design and application of lntelligent control system for copper flotation processes [J]‍. Nonferrous Metals Engineering & Research, 2019, 40(5): 5‒9‍.

[ 6 ] Putz E, Cipriano A‍. Hybrid model predictive control for flotation plants [J]‍. Minerals Engineering, 2015, 70: 26‒35‍.

[ 7 ] 孔繁苗‍. 基于数据驱动的浮选过程智能控制 [D]‍. 徐州: 中国矿业大学 (硕士学位论文), 2019‍.
Kong F M‍. Intelligent control of flotation process based on data-driven [D]‍. Xuzhou: China University of Mining and Technology (Master´s thesis), 2019‍.

[ 8 ] 毛浩, 郝强‍. 张家峁智能化选煤厂的研究与设计 [J]‍. 中国煤炭, 2017, 43(10): 82‒87‍.
Mao H, Hao Q‍. Research and design of Zhangjiamao intelligent coal preparation plant [J]‍. China Coal, 2017, 43(10): 82‒87‍.

[ 9 ] 王淀佐‍. 矿物浮选和浮选剂:理论与实践 [M]‍. 长沙: 中南工业大学出版社, 1986‍.
Wang D Z‍. Mineral flotation and reagent: principle and application [M]‍. Changsha: Central South University Press, 1986‍.

[10] 陈建华‍. 浮选配位化学原理 [M]‍. 北京: 科学出版社, 2021‍.
Chen J H‍. Coordination chemistry of flotation [M]‍. Beijing: Science Press, 2021‍.

[11] Liu G Y, Xiao J J, Zhou D W, et al‍. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption [J]‍. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013 (434): 243‒252.

[12] Zhao G, Zhong H, Qiu X Y, et al‍. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation [J]‍. Minerals Engineering, 2013 (49): 54‒60‍.

[13] Yang X L, Liu S, Liu G Y, et al‍. A DFT study on the structure-reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors [J]‍. Journal of Industrial and Engineering Chemistry, 2017 (46): 404‒415‍.

[14] 孙伟, 杨帆, 胡岳华, 等‍. 前线轨道在黄铜矿捕收剂开发中的应用 [J]‍. 中国有色金属学报, 2009, 19: 1524‒1532
Sun W, Yang F, Hu Y H, et al‍. Application of frontier orbital in developing new collectors of chalcopyrite [J]‍. The Chinses Journal of Nonferrous Metals, 2009, 19: 1524‒1532‍.

[15] Pan Z Z, Li W L, Fortner J D, et al‍. Measurement and surface complexation modeling of U(VI) adsorption to engineered iron oxide nanoparticles [J]‍. Environmental Science & Technology, 2017, 51(16): 9219‒9226‍.

[16] Li Y, Zhao X P, Wu J T, et al‍. Surface complexation modeling of divalent metal cation adsorption on birnessite [J]‍. Chemical Geology, 2020, 551: 119774‍.

[17] Sun Y B, Li Y‍. Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review [J]‍. Environmental Pollution, 2021, 278: 116861‍.

[18] 吴江彤, 曾安容, 李清兰, 等‍. 重金属 ‒ 柠檬酸 ‒ 针铁矿三元体系的表面络合模型研究 [J]‍. 环境化学, 2021, 40(2): 520‒530‍.
Wu J T, Zeng A R, Li Q L, et al‍. Development of surface complexation model of heavy metal-citric acid-goethite ternary system [J]‍. Environmental Chemistry, 2021, 40(2): 520‒530‍.

[19] Hiemstra T, Mia S, Duhaut P-B, et al‍. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate [J]‍. Environmental Science & Technology, 2013 (47): 9182‒9189‍.

[20] Goldberg S‍. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems [J]‍. Geochimica et Cosmochimica Acta, 1992 (57): 205‍.

[21] 渠晨晨‍. 土壤矿物 / 有机物复合体固定重金属的表面络合模型研究 [D]‍. 武汉: 华中农业大学 (博士学位论文), 2019‍.
Qu C C‍. Surface complexation modeling of heavy metals binding on soil mineral-organic composites [D]‍. Wuhan: Huazhong Agricultural University (Doctoral dissertation), 2019‍.

[22] Ramos M E, Emiroglu C, García D, et al‍. Modeling the adsorption of oxalate onto montmorillonite [J]‍. Langmuir, 2015 (31): 11825‒11834‍.

[23] Liu Y, Alessi D S, Flynn S L, et al‍. Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength [J]‍. Chemical Geology, 2018 (483): 191‒200‍.

[24] 黄磊, 方红卫, 王靖宇, 等‍. 天然石英砂的表面络合模型研究 [J]‍. 环境科学学报, 2014 (34): 1141‒1149‍.
Huang L, Fang H W, Wang J Y, et al‍. Surface complexation model for quartz sand particles [J]‍. Acta Scientiae Circumstantiae, 2014 (34): 1141‒1149‍.

[25] 王宁‍. 镉在蒙脱石 / 高岭石 ‒ 枯草芽孢杆菌复合体上吸附的表面络合模型研究 [D]‍. 武汉: 华中农业大学 (硕士学位论文), 2015‍.
Wang N‍. Surface complexation modeling of Cd(Ⅱ) adsorption on montmorillonite/kaolinite-bacillus subtilis composites [D]‍. Wuhan: Huazhong Agricultural University (Master´s thesis), 2015‍.

[26] Karimzadeh L, Barthen R, Stockmann M, et al‍. Effect of glutamic acid on copper sorption onto kaolinite-Batch experiments and surface complexation modeling [J]‍. Chemosphere, 2017, 178: 277‒281‍.

[27] Jolsterå R, Gunneriusson L, Forsling W‍. Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions [J]‍. Journal of Colloid and Interface Science, 2010, 342 (2): 493‒498‍.

[28] Yue T, Sun W, Hu Y H, et al‍. Mechanism of goethite precipitation on magnetite and maghemite nanoparticles studied by surface complexation/precipitation modeling [J]‍. Langmuir, 2018, 34(50): 15134‒15142‍.

[29] Kosmulski M‍. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature [J]‍. Advances in Colloid and Interface Science, 2009 (152): 14‒25‍.

[30] Tertre E, Castet S, Berger G, et al‍. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 ℃: Experimental and modeling study [J]‍. Geochimica et Cosmochimica Acta, 2006 (70): 4579‒4599‍.

[31] Zhang N, Nguyen A V, Zhou C‍. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources [J]‍. Advances in Colloid and Interface Science, 2018 (254): 56‒75‍.

相关研究