期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第1期 doi: 10.15302/J-SSCAE-2024.01.015

智能无人集群系统跨域协同技术研究现状与展望

1. 卫星信息智能处理与应用技术重点实验室,北京 100192;

2. 东南大学数学学院,南京 211189;

3. 北京理工大学前沿交叉科学研究院,北京 100081;

4. 空地一体新航行系统技术全国重点实验室,北京 100081

资助项目 :中国工程院咨询项目“跨域无人系统群体智能技术体系研究”(2023-HY-15) 收稿日期: 2023-12-08 修回日期: 2023-12-28 发布日期: 2024-02-21

下一篇 上一篇

摘要

随着智能化技术和无人系统技术的快速发展,智能无人集群系统跨域协同的概念应运而生并得到了广泛关注与深入研究,智能无人集群系统跨域协同技术逐渐成为世界各国抢占无人系统技术竞争中的制高点。本文从我国智能无人集群系统跨域协同技术的发展需求出发,梳理了海空、空地以及海陆 / 海陆空等典型无人场景跨域协同技术的研究现状;深入分析了智能无人集群系统跨域协同技术的发展现状、技术需求以及未来的重点研究方向。最后,从总体思路、体系架构、理论创新和技术攻关4 个层面,提出了推动智能无人集群系统跨域协同技术稳健与快速发展的对策建议,以期促进我国无人系统应用能力的持续提升。

图片

图1

参考文献

[ 1 ] 王耀南, 安果维, 王传成, 等‍‍. 智能无人系统技术应用与发展趋势 [J]‍. 中国舰船研究, 2022, 17(5): 9‒26‍.
Wang Y N, An G W, Wang C C, et al‍. Technology application and development trend of intelligent unmanned system [J]‍. Chinese Journal of Ship Research, 2022, 17(5): 9‒26‍.

[ 2 ] 温广辉, 周佳玲, 吕跃祖, 等‍. 多导弹协同作战中的分布式协调控制问题 [J]‍. 指挥与控制学报, 2021, 7(2): 137‒145‍.
Wen G H, Zhou J L, Lyu Y Z, et al‍. Distributed coordination control in multi-missile cooperative tasks [J]‍. Journal of Command and Control, 2021, 7(2): 137‒145‍.

[ 3 ] 梁晓龙, 王宁, 王维佳, 等‍. 海上跨域无人集群研究进展综述 [J]‍. 空军工程大学学报, 2023, 24(5): 2‒15+1‍.
Liang X L, Wang N, Wang W J, et al‍. Progress in maritime cross-domain manned swarms [J]‍. Journal of Air Force Engineering University, 2023, 24(5): 1, 2‒15‍.

[ 4 ] 初军田, 张武, 丁超, 等‍. 跨域无人系统协同作战需求分析 [J]‍. 指挥信息系统与技术, 2022, 13(6): 1‒8‍.
Chu J T, Zhang W, Ding C, et al‍. Requirement analysis on cross-domain unmanned system cooperative operation [J]‍. Command Information System and Technology, 2022, 13(6): 1‒8‍.

[ 5 ] 何玉庆, 秦天一, 王楠‍. 跨域协同: 无人系统技术发展和应用新趋势 [J]‍. 无人系统技术, 2021, 4(4): 1‒13‍.
He Y Q, Qin T Y, Wang N‍. Cross-domain collaboration: New trends in the development and application of unmanned systems technology [J]‍. Unmanned Systems Technology, 2021, 4(4): 1‒13‍.

[ 6 ] Ma Y, Zhao Y J, Qi X, et al‍. Cooperative communication framework design for the unmanned aerial vehicles-unmanned surface vehicles formation [J]‍. Advances in Mechanical Engineering, 2018, 10(5): 1‒9‍.

[ 7 ] Yu Y N, Rodríguez-Piñeiro J, Xie S Q, et al‍. Measurement-based propagation channel modeling for communication between a UAV and a USV [C]‍. Madrid: 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022‍.

[ 8 ] Wang C, Zhang P Y, Kumar N, et al‍. GCWCN: 6G-based global coverage wireless communication network architecture [J]‍. IEEE Network, 2023, 37(3): 218‒223‍.

[ 9 ] Bao S H, Sun W F, Xu H‍. A native intelligent and security 6G network architecture [C]‍. Foshan: 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2022‍.

[10] 王浩亮, 尹晨阳, 卢丽宇, 等‍. 面向海上搜救的UAV与USV集群协同路径跟踪控制 [J]‍. 中国舰船研究, 2022, 17(5): 157‒165‍.
Wang H L, Yin C Y, Lu L Y, et al‍. Cooperative path following control of UAV and USV cluster for maritime search and rescue [J]‍. Chinese Journal of Ship Research, 2022, 17(5): 157‒165‍.

[11] Gonzalez-Garcia A, Miranda-Moya A, Castañeda H‍. Robust visual tracking control based on adaptive sliding mode strategy: Quadrotor UAV-catamaran USV heterogeneous system [C]‍. Athens: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), 2021‍.

[12] Li W Z, Ge Y, Ye G‍. UAV-USV cooperative tracking based on MPC [C]‍. Hefei: 2022 34th Chinese Control and Decision Conference (CCDC), 2022‍.

[13] Li J Q, Zhang G Q, Li B‍. Robust adaptive neural cooperative control for the USV-UAV based on the LVS-LVA guidance principle [J]‍. Journal of Marine Science and Engineering, 2022, 10(1): 51‍.

[14] Wei W, Wang J J, Fang Z R, et al‍. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting [J]‍. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4085‒4090‍.

[15] Yao P, Gao Z C‍. UAV/USV cooperative trajectory optimization based on reinforcement learning [C]‍. Xiamen: 2022 China Automation Congress (CAC), 2022‍.

[16] 赵良玉, 程喆坤, 高凤杰, 等‍. 无人机 / 艇协同自主降落的若干关键技术 [J]‍. 中国造船, 2020, 61(S1): 156‒163‍.
Zhao L Y, Cheng Z K, Gao F J, et al‍. Several key technologies of unmanned aerial vehicle‒unmanned surface vehicle cooperative autonomous landing [J]‍. Shipbuilding of China, 2020, 61(S1): 156‒163‍.

[17] 范云生, 孙涛, 王国峰, 等‍. 基于海空双视觉协同的无人艇载无人机自主降落与验证 [J]‍. 大连海事大学学报, 2022, 48(2): 1‒10, 20‍.
Fan Y S, Sun T, Wang G F, et al‍. Autonomous landing and verification of unmanned boat-borne UAVs based on dual vision collaboration between sea and air [J]‍. Journal of Dalian Maritime University, 2022, 48(2): 1‒10, 20‍.

[18] Li W Z, Ge Y, Guan Z H, et al‍. Synchronized motion-based UAV-USV cooperative autonomous landing [J]‍. Journal of Marine Science and Engineering, 2022, 10(9): 1214‍.

[19] Xu Z C, Hu B B, Liu B, et al‍. Vision-based autonomous landing of unmanned aerial vehicle on a motional unmanned surface vessel [C]‍. Shenyang: 2020 39th Chinese Control Conference (CCC), 2020‍.

[20] Dai J, Liu S L, Hao X Y, et al‍. Unmanned ground vehicle-unmanned aerial vehicle relative navigation robust adaptive localization algorithm [J]‍. IET Science, Measurement & Technology, 2023, 17(5): 183‒194‍.

[21] Li J Q, Cheng Y Y, Zhou J, et al‍. Energy-efficient ground traversability mapping based on UAV-UGV collaborative system [J]‍. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 69‒78‍.

[22] Liu D Q, Bao W D, Zhu X M, et al‍. Vision-aware air-ground cooperative target localization for UAV and UGV [J]‍. Aerospace Science and Technology, 2022, 124: 107525‍.

[23] Wang D J, Lian B W, Tang C K‍. UGV-UAV robust cooperative positioning algorithm with object detection [J]‍. IET Intelligent Transport Systems, 2021, 15(7): 851‒862‍.

[24] 江碧涛‍. 我国空间对地观测技术的发展与展望 [J]‍. 测绘学报, 2022, 51(7): 1153‒1159‍.
Jiang B T‍. The development and prospect of China´s space earth observation technology [J]‍. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1153‒1159‍.

[25] Li J Q, Deng G Q, Luo C W, et al‍. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems [J]‍. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9585‒9596‍.

[26] Li J X, Liu H, Lai K, et al‍. Vehicle and UAV collaborative delivery path optimization model [J]‍. Mathematics, 2022, 10(20): 3744‍.

[27] 胡子峰, 陈洋, 郑秀娟, 等‍. 空地异构机器人系统协作巡逻路径规划方法 [J]‍. 控制理论与应用, 2022, 39(1): 48‒58‍.
Hu Z F, Chen Y, Zheng X J, et al‍. Cooperative patrol path planning method for air-ground heterogeneous robot system [J]‍. Control Theory & Applications, 2022, 39(1): 48‒58‍.

[28] De Petrillo M, Beard J, Gu Y, et al‍. Search planning of a UAV/UGV team with localization uncertainty in a subterranean environment [J]‍. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(6): 6‒16‍.

[29] 陶灿灿, 韩旭, 周锐‍. 基于DTC和遗传算法的无人机 ‒ 无人车任务规划方法 [J]‍. 无线电通信技术, 2022, 48(6): 1019‒1026‍.
Tao C C, Han X, Zhou R‍. Mission planning of UAV-UGV based on DTC and genetic algorithm [J]‍. Radio Communications Technology, 2022, 48(6): 1019‒1026‍.

[30] Krizmancic M, Arbanas B, Petrovic T, et al‍. Cooperative aerial-ground multi-robot system for automated construction tasks [J]‍. IEEE Robotics and Automation Letters, 2020, 5(2): 798‒805‍.

[31] 丁宇航, 王楠, 李雄‍. 基于PDDL的空地协同作战任务规划方法研究 [J]‍. 战术导弹技术, 2022 (1): 131‒138‍.
Ding Y H, Wang N, Li X‍. Research on mission planning method of air-ground cooperative combat based on PDDL [J]‍. Tactical Missile Technology, 2022 (1): 131‒138‍.

[32] 周思全, 董希旺, 李清东, 等‍. 无人机 ‒ 无人车异构时变编队控制与扰动抑制 [J]‍. 航空学报, 2020, 41(S1): 723767‍.
Zhou S Q, Dong X W, Li Q D, et al‍. Time-varying formation control and disturbance suppression rejection for UAV-UGV heterogeneous swarm system [J]‍. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723767‍.

[33] Pacheco Bacheti V, Santos Brandão A, Sarcinelli-Filho M‍. Path-following by a UGV-UAV formation based on null space [C]‍. São Paulo: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), 2021‍.

[34] Cheng M, Liu H, Wen G H, et al‍. Data-driven time-varying formation-containment control for a heterogeneous air-ground vehicle team subject to active leaders and switching topologies [J]‍. Automatica, 2023, 153: 111029‍.

[35] Liu D Y, Liu H, Lyu J H, et al‍. Time-varying formation of heterogeneous multiagent systems via reinforcement learning subject to switching topologies [J]‍. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(6): 2550‒2560‍.

[36] Zhao W B, Liu H, Valavanis K P, et al‍. Fault-tolerant formation control for heterogeneous vehicles via reinforcement learning [J]‍. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2796‒2806‍.

[37] Zhao W B, Liu H, Gao Q, et al‍. Robust optimal formation control of heterogeneous air-ground vehicles under communication faults via reinforcement learning [C]‍. Harbin: International Conference on Guidance, Navigation and Control, 2023‍.

[38] 徐晓帆, 王妮炜, 高璎园, 等‍. 陆海空天一体化信息网络发展研究 [J]‍. 中国工程科学, 2021, 23(2): 39‒45‍.
Xu X F, Wang N W, Gao Y Y, et al‍. Development of land‒sea‒air‒space integrated information network [J]‍. Strategic Study of CAE, 2021, 23(2): 39‒45‍.

[39] Khan M A, Alzahrani B A, Barnawi A, et al‍. A resource friendly authentication scheme for space‒air‒ground‒sea integrated Maritime Communication Network [J]‍. Ocean Engineering, 2022, 250: 110894‍.

[40] Feng H L, Cui Z Q, Han C Z, et al‍. Bidirectional green promotion of 6G and AI: Architecture, solutions, and platform [J]‍. IEEE Network, 2021, 35(6): 57‒63‍.

[41] Wang Z G, Chen C L, Zhang Y P, et al‍. An interaction framework for multi-domain unmanned systems collaboration based on interoperability messages [C]‍. Hefei: 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), 2022‍.

[42] Seehuus R A, Mathiassen K, Ruud E L M, et al‍. Battle management language for robotic systems [C]‍. Prague: International Conference on Modelling and Simulation for Autonomous Systems, 2019‍.

相关研究