《1 前言》

1 前言

对于非线性系统控制, 一般首先采用线性化的方法[1,2], 再用其他控制手段进行控制[3,4,5]。在系统状态未知的情况下, 通常的观测器不能同时观测其外部及内模动态[6,7]。而一般的滑模控制器具有抖振现象[8,9], 加入饱和函数后可以消除抖振现象, 却导致收敛速度与精度降低[10,11]。连续形式的滑模控制可以消除抖振[12]。文献[13]中提出了基于一阶微分方程的解在有限时间内到达零并保持不变特性的滑动模态, 而滑模面为多层结构, 随着滑动变量沿滑模面逐层滑动, 变量最后达到零, 降低了抖振现象。然而, 控制器中含有滑模变量的高阶导数, 当存在不确定性和扰动情况时, 每层的滑模变量都将受到不确定性与扰动的影响。利用一个基于非线性系统线性化的观测器, 同时观测外部及内模动态变量, 并引入一层滑模面和具有滤波形式的摄动参数的滑模变量, 既能够消除抖振现象, 同时保证系统状态变量迅速收敛。

《2 问题分析》

2 问题分析

所研究的被控对象为

{x˙=f(x)+g(x)u,y=h(x)(1)

其中, xn维状态变量, f (x) , g (x) 是n维光滑向量函数。uR是控制输入, y为输出。设系统的相对阶为r, 即满足如下关系:

LgLi1fh(x)=0,i=1,2,,r1,LgLr1fh(x)0

因此, 式 (1) 线性化为

ξ˙=Aξ+B[a(ξ,η)+b(ξ,η)u],η˙=q(ξ,η),y=CTξ(2)

其中

[ξη]T=[ξ1ξrη1ηnr]T,χ(x)=[h(x)Lfh(x)Lr1fh(x)χ1(x)χnr(x)]a(ξη)=Lrfh(χ1(ξη)),b(ξη)=LgLr1fh(χ1(ξη))0,A=000100010000r×rB=001r×1C=100r×1(3)

e=yyΓ,e¯=[e1er]T=[ξ1yΓξr11yr1Γ]TYΓ=[yΓy(r1)Γ]T。yΓ为参考输出。所以, 误差系统为

e=Ae¯+B[a(e¯,η,YΓ)Y(r)Γ+b(e¯,η,YΓ)u],η˙=q(e¯,η,YΓ)(4)

假设1 内模动态η˙=q(0,η,0)对于原点是局部指数稳定的 (对于物理系统而言, 一般的最小相位系统可满足假设1) 。

由假设可知, qη(0,0,0)是Hurwitz矩阵, 所以存在一个正常数k0和正定矩阵P2满足

vTP2{qη(000)}v=k0v2(5)

由于qη(ξηYΓ)的连续性, 存在 (0, 0) 的一个领域, 满足

vTP2{qη(ξηYΓ)}vk0v2(6)

假设2 a (ξ, …, η, YΓ) , b (ξ, η, YΓ) 满足

a(τ1υ1YΓ)+b(τ1υ1YΓ)ua(τ2υ2YΓ)+b(τ2υ2YΓ)ul1τ1τ2+l2υ1υ2(7)

其中, τ1, τ2Rr, υ1, υ2Rn-r, l1, l2为大于零的常数。

假设3

q(τ1ηYΓ)q(τ2ηYΓ)l3τ1τ2(8)

其中, τ1, τ2Rr, η2Rn-r, l3为大于零的常数。只要式 (4) 的等号右边各项是全局Lipschitz的, 均可满足假设2、假设3。令P1满足等式:

AT1P1+P1A1=Ir(9)A1=k1k2kr100010000,

sr+k1sr-1+…+kr=0的根在左开半平面。

《3 观测器设计》

3 观测器设计

定理1 基于式 (4) , 给出观测器形式如下:

《图1》

那么, 对于所有的0<ε<ε*, 满足

《图2》

其中, 运算中范数均取二范数。

《图3》

证明 令

z1=ee¯,z2=ηη

所以,

《图4》

其中

《图5》

《图6》

所以,

《图7》

P1 (ε) =Ξ (ε) T, P1Ξ (ε) , 所以,

《图8》

选取Lyapunov函数为

《图9》

所以,

《图10》

ζ1=Ξ (ε) z1。由‖Ξ (ε) -1‖=ε1-r得‖z1‖≤ε1-rζ1‖=ε1-r。且由‖BTΞ (ε) ‖=εr-1

《图11》

由于ε≤1/ (4l1P1‖) , 所以

V˙12ε(12r)ζ12+2ε(22r)(l2P1+l3P2)ζ1z2k0z2234k0z22(12ε(12r)4k0ε(22r)(l2P1+l3P2))ζ12

由于

《图12》

所以

V˙34k0z2214ε(12r)ζ12,

定理得证。

《4 控制器设计》

4 控制器设计

文献[13]中的微分方程

σ˙(t)=k1σ(t)k2σ(t)q/p,(12)

其中, k1, k2>0, p, q均为大于零的奇数, 且p>q。解上述微分方程, 可得k1σ (t) (p-q) /p+k2=c exp (-[k1 (p-q) ]t/p) , 设x (0) ≠0, 可得c=k1σ (0) (p-q) /p+k2。所以, 当σ (ts) =0时, 可解出ts=[p/k1 (p-q) ]ln (k1σ (0) (p-q) /p+k2) /k2。可知变量σtts时达到零并保持不变。

利用上述微分方程的解在有限时间内为零并保持不变的性质, 设计滑模变量为

σ(t)=(ddt+λε1)r1e1=e(r1)1+a1ε1e(r2)1++ar2εr21e˙1+ar1εr11e1(13)

趋近律如式 (12) 所示。λ, ε1>0, ε1为摄动参数。其中, i=1r1(s+λi)=0sr-1+a1sr-2+…+ar-2s+ar-1=0等价, 并且λ1, …, λr-1均为大于零的互不相同的实数。k1, k2>0, p>q>0, 并且 p, q为奇数。进一步规定 (p+q) /2同时也为奇数, 用于以后的稳定性分析中Lyapunov函数微分不等式的构造。

可以看出, 当tts时, σ≡0, 基于式 (12) , 当tts得到一个r-1阶常系数微分方程

e(r1)1+a1ε1e(r2)1++ar2εr21e˙1+ar1εr11e1=0(14)

微分方程的解为

e1(t)=i=1nhiexp(λiε1t),(15)

其中, hi为不等于零的常数。可以看出, 当ε1>0充分小时,

《图13》

迅速向零收敛, 根据观测器的性质, e1 (t) 迅速向零收敛, 只需设计控制器使得变量到达滑模面式 (12) 即可。同时可以看到上述的r-1阶常系数微分方程具有滤波作用, 并且由于ε1>0的存在, 加快了

《图14》

收敛速度。从而给出如下定理。

定理2 对于系统式 (4) , 采用式 (10) 所示的观测器, 控制器采用如下形式:

《图15》

那么,

《图16》

其中,

《图17》

证明:

《图18》

设Lyapunov函数为V=σ2 (t) /2, 所以,

V˙=σ(t)σ˙(t)=σ(t)(a(e,η,YΓ)+b(e,η,YΓ)u+v(t))=k1σ2(t)k2σ(t)(p+q)/p0

另外, 由假设1定理得证。

《5 稳定性分析》

5 稳定性分析

当系统中有扰动、不确定项时, 非线性误差系统表示如下

e=Ae¯+B[a(e¯,η)y(r)Γ+b(e¯,η)u+d(t)],η˙=q(e¯,,η)(18)

其中 |d (t) |≤L1, L1为大于零的常数。

引理1[14] 如果W (X, t) 在开集DR2上是连续的, 且对微分方程

X˙(t)=W(X(t),t),X(t0)=X0(19)

存在唯一解。如果X (t) 是上述微分方程在时域[t0, t1) 上的解, V (t) 是微分不等式

V˙(t)W(V(t),t)(20)

在时域[t0, t1]上的解, 且初始条件满足V (t0) ≤X (t0) , 则在时域[t0, t1]上存在不等式关系

V(t)X(t)(21)

定理3 对于系统式 (18) , 采用观测器式 (10) 、控制器式 (16) , 那么,

|e(i)1|2iϕε(ri1)1/λ(ri1)i=0,,r1(22)

其中

《图19》

《图20》

证明 选取Lyapunov函数为V=σ2 (t) /2, 沿着式 (18) 的解曲线求导, 得

V˙(t)=σσ˙=σ(a(e¯,η,YΓ)+b(e¯,η,YΓ)u+v(t)+d(t))=θk1σ2θk2σ(p+q)/p+σΘ(t)=(θk1Θ(t)/σ)σ2θk2σ(p+q)/p<(k1/γL/|σ|)σ21γk2σ(p+q)/p(25)

如果|σ|>γL/k1, 那么。V˙(t)=σσ˙<0。由式 (25) 得

V˙(t)2(k1/γL/|σ|)V(t)2(p+q)/2pk2V(t)(p+q)2/p/γ=2μ1V(t)2(p+q)/2pk2V(t)p+q)2/p/γ(26)

而由式 (12) 的分析, 且 (p+q) /2也为奇数, 所以微分方程

X˙(t)=2μ1X(t)2(p+q)/2pk2X(t)(p+q)/2/p/γ(27)

的解在有限时间内为零。当X (t0) =V (t0) >0时, 由引理1得0<V (t) ≤X (t) 。所以在有限时间内V (t) 到达零并保持不变。可以看出σ在有限时间后t1-t0, 保持在区域 {σ||σ|≤γL/k1} 内。或者式 (26) 可以写成

V˙(t)=θk1σ2(θk2Θ(t)/σq/p)σ(p+q)/pk1σ2/γ(k2/γL/|σ|q/p)σ(p+q)/p(28)

如果|σ|> (γL/k2) p/q, 那么V˙(t)=σσ˙<0。由式 (28) , 得

V˙(t)2k1V(t)/γ2(p+q)/2p(k2/γL/|σ|q/p)V(t)(p+q)/2p=2k1V(t)/γ2(p+q)/2pμ2V(t)|p+q|/2p(29)

类似分析可知, 在有限时间内V (t) 到达零并保持不变。所以, 可以看出σ在有限时间后t2-t0保持在区域 {σ||σ|≤ (γL/k2) p/q} 内。

总之, σ有限时间段max (t1-t0, t2-t0) 后保持在区域

{σ||σ|ϕ=min{γL/k1,(γL/k2)p/q}}

内。由式 (13) , 得到

|σ(t)|=e(r1)1+a1ε1e(r2)1++ar2εr21e˙1+ar1εr11e1ϕ(30)

所以, 可知ϕ/λn-1为有界层的宽度, 并且可得[14,15]

|e(i)1|(2λε1)iϕ/(λε1)r1=2iεr+i11ϕλr+i1i=0,,r1

定理得证。

《6 仿真》

6 仿真

非线性系统为

x˙=x1x2x31x1x3x21+x2+02+2x300u+M(x)wy=h(x)=x4

对于上述系统, 得到

h/x=[0001],Lgh(x)=0,Lfh(x)=x21+x2,LgLfh(x)=2(1+x3),L2fh(x)=2x21x22x41+x1

可知系统的相对阶为2。令ξ1=h (x) =x4, ξ2=Lfh (x) =x2+x21, 得到η1=x3, η2=x1。因此, Jacobi矩阵

xχ(x)=02x101010000101000

是非奇异的, 并且逆变换为x1=η2, x2=ξ2-η22, x3=η1, x4=ξ1

参考输入为yΓ=2e-05tsin 0.5t+cos t+d (t) , |d (t) |<0.1。

系统在新的坐标系下误差系统为

e˙1=e2,e˙2=η2+η2(η2(e2η22)η32)+(2+2η1)uy(2)dη˙1=η1η˙2=2η32+e2η2

观测器为

《图21》

选取滑模变量为

σ(t)=(d/dt+1)e1

趋近律选为

σ˙(t)=k1σ(t)k2σ(t)q/p,k1=2,k2=0.5,q=3,p=7

控制器为

《图22》

闭环系统输出误差曲线如图1所示。

《图23》

图1 系统输出误差曲线

图1 系统输出误差曲线  

Fig.1 The curve of output error for the system

《7 结论》

7 结论

由以上分析及仿真可知, 所设计的滑模控制器抗干扰性强, 且具有较快的收敛速度。