期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

碳基燃料SOFC阳极材料研究进展

1. 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190;

2. 中国科学院清洁能源研究重点实验室,北京市新能源材料与器件重点实验室,北京 100190;

3. 中国人民解放军防化学院,新能源与能源安全实验室,北京102205

资助项目 :国家重点基础研究发展计划“973计划”资助项目(2012CB215402);国家自然科学基金项目(51172275);中国科学院物理所人才启动项目(Y1k5018E11) 收稿日期: 2012-11-05 发布日期: 2013-01-28 10:49:15.000

下一篇 上一篇

摘要

固体氧化物燃料电池(SOFCs)是一类可以将燃料气体的化学能以高效而环境友好的方式直接转化为电能的电化学反应器。最近的研究趋势是发展可以直接电化学氧化碳氢化合物燃料(如天然气)的电池,但是使用碳氢化合物作为燃料时,目前最常使用的镍-氧化钇稳定的氧化锆(Ni/YSZ)金属陶瓷阳极材料具有易积碳和硫中毒的缺点。因此,研究在燃料气氛下具有混合离子-电子电导的替代阳极材料显得尤为必要。综述了以碳基燃料工作的SOFCs阳极材料研究的一些进展,并展望本领域在未来的发展趋势。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Singhal S C,Kendall K. High Temperature Solid Oxide Fuel Cells:Fundamentals,Design,and Applications [M]. Amsterdam:Elsevier,2003.

[ 2 ] Atkinson A,Barnett S,Gorte R J,et al. Advanced anodes for high-temperature fuel cells [J]. Nat Mater,2004,3:17-27. 链接1

[ 3 ] Mclntosh S,Gorte R J. Direct hydrocarbon solid oxide fuel cells [J]. Chem Rev,2004,104 :4845-4865. 链接1

[ 4 ] Jiang S P,Chan S H. A review of anode materials development in solid oxide fuel cells [J]. J Mater Sci,2004,39:4405-4439. 链接1

[ 5 ] Mogensen M,Kammer K. Conversion of hydrocarbons in solid oxide fuel cells [J]. Annu Rev Mater Res,2003,33:321-331. 链接1

[ 6 ] Fergus J W. Oxide anode materials for solid oxide fuel cells [J]. Solid State Ionics,2006,177:1529-1541.

[ 7 ] Sun C W,Stimming U. Recent anode advances in solid oxide fuel cells [J]. J Power Sources,2007,171:247-260. 链接1

[ 8 ] Lashtabeg A,Skinner S J. Solid oxide fuel cells- a challenge for materials chemists? [J] J Mater Chem,2006,16:3160-3170. 链接1

[ 9 ] Fuel Cell Handbook,7th ed.,US Department of Energy,Morgantown,WV,2004,www.netl.doe.gov [EB/OL]. 链接1

[10] Gorte R J,Vohs J M. Novel SOFC anodes for the direct electrochemicaloxidationofhydrocarbons [J].JCatal,2003,216:477-486. 链接1

[11] Brown M,Primdahl S,Mogensen M. Structure/performance relations for Ni/ytrria-stabilized zirconia anodes for solid oxide fuel cells [J]. J Electrochem Soc,2000,147:475-485.

[12] Tanner C W,Fung K Z,Virkar A V. The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis [J]. J Electrochem Soc,1997,144:21-30.

[13] Wilson J R,Kobsiriphat W,Mendoza R,et al. Three- dimensional reconstruction of a solid-oxide fuel-cell anode,Nat. Mater,2006,5:541-544. 链接1

[14] Brandon N P,Skinner S,Steele B C H. Recent advances in materials for fuel cells [J]. Annu Rev Mater Res,2003,33:183-213. 链接1

[15] Suzuki T,Hasan Z,Funahashi Y,et al. Impact of anode microstructure on solid oxide fuel cells [J]. Science,2009,325:852-855. 链接1

[16] Minh N Q. Ceramic fuel-cells [J]. J Am Ceram Soc,1993,76: 563-588. 链接1

[17] Zhu W Z,Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater Sci Eng,A2003,362:228-239. 链接1

[18] Steele B C H. Appraisal of Ce1- yGdyO2- y/2 electrolytes for ITSOFC operation at500℃[J]. Solid State Ionics,2000,129:95-110. 链接1

[19] Murray E P,Tsai T,Barnett S A. A direct- methane fuel cell with a ceria-based anode [J]. Nature,1999,400:649-651. 链接1

[20] Park S,Vohs J M,Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404:265-267. 链接1

[21] McIntosh S,Vohs J M,Gorte R J. Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs [J]. J Electrochem Soc,2003,150:A470-A476.

[22] Kim H,Lu C,Worrell W L,et al. Cu-Ni ceramet anodes for direct oxidation of methane in solid-oxide fuel cells [J]. J Electrochem Soc,2002,149:A247-A250.

[23] Lee S,Vohs J M,Gorte R J. A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ [J]. J Electrochem. Soc,2004,151:A1319-A1323.

[24] Xie Z,Zhu W,Zhu B,et al. FexCo0.5-x-SDC anodes for low-temperature solid oxide fuel cells [J]. Electrochim Acta,2006,51: 3052-3057. 链接1

[25] Sun C W,Sun J,Xiao G L,et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres [J]. J Phys Chem B,2006,110:13445-13452. 链接1

[26] Skorodumova N V,Simak S I,Lundqvist B I,et al. Quantum origin of the oxygen storage capability of ceria [J]. Phys Rev Lett,2002,89:166601. 链接1

[27] Marina O A,Mogensen M. High- temperature conversion of methane on a composite gadolinia- doped ceria- gold electrode [J]. Appl Catal A,1999,189:117-126. 链接1

[28] Saeki M J,Uchida H,Watanabe M. Nobel metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature [J]. Catal Lett,1994,26:149-157. 链接1

[29] Hibino T,Hashimoto A,Yano M,et al. Ru- catalyzed anode materials for direct hydrocarbon SOFCs [J]. Electrochim Acta, 2003,48:2531-2537. 链接1

[30] Zhan Z,Barnett S A. An octane-fueled solid oxide fuel cell [J]. Science,2005,308:844-847. 链接1

[31] Sun C W,Xie Z,Xia C R,et al. Invesitigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells [J]. Electrochem Commun,2006,8:833-838. 链接1

[32] Ramirez-Cabrera E,Atkinson A,Chadwick D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis [J]. Solid State Ionics,200,136:825-831. 链接1

[33] Antonucci V,Faro M L,Rosa D L. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 [C]// Turkey,Istanbul:2005.

[34] Wisniewski M,Boreave A,Gelin P. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x [J].CatalCommun,2005,6:596-600. 链接1

[35] Hibino T,Hashimoto A,Yano M,et al. High performance anodes for SOFCs operting in methane-air mixture at reduced temperatures [J]. J Electrochem Soc,2002,149:A133-A136.

[36] Ahn K,He H P,Vohs J M,et al. Enhanced thermal stability of SOFC anodes made with CeO2- ZrO2 solutions[J]. Electrochem Solid-State Lett,2005,8:A414-A417.

[37] Ye X F,Huang B,Wang S R,et al. Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel[J]. J Power Sources,2007,164:203-209. 链接1

[38] Hirabayashi D,Hashimoto A,Hibino T,et al. Bi-based oxide anodes for direct hydrocarbon SOFCs at intermediate temperatures,Electrochem[J]. Solid-State Lett,2004,7:A108-A110.

[39] Yang L,Choi Y,Qin W,et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells [J]. Nature Commun,2011,2. DOI: 10.1038/ncomms1359.

[40] Boukamp B A. The amazing perovskite anode [J]. Nat Mater, 2003,2:294-296. 链接1

[41] Tao S W,Irvine J T S. A redox-stable efficient anode for solid oxide fuel cells [J]. Nat Mater,2003,2:320-323. 链接1

[42] Zha S W,Tsang P,Cheng Z,et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1- xMnxO3 under anodic conditions [J]. J Solid State Chem,2005,178:1844-1850. 链接1

[43] Huang Y H,Dass R I,Denyszyn J C,et al. Synthesis and characterization of Sr2MgMoO6- δ [J]. J Electrochem Soc,2006,153: A1266-A1272.

[44] Huang Y H,Dass R I,Xing Z L,et al. Double perovskites as anode materials for solid- oxide fuel cells [J]. Science,2006, 312:254-257. 链接1

[45] Zhang P,Huang Y,Cheng J,et al. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels [J]. J Power Sources,2011,196:1738-1743. 链接1

[46] Yang L,Wang S,Blinn K,et al.,Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2- x YbxO3-δ [J]. Science,2009,326:126-129.

[47] Vernoux P,Guillodo M,Fouletier J,et al. Alternative anode material for gradual methane reforming in solid oxide fuel cells [J]. Solid State Ionics,2000,135:425-431. 链接1

[48] Sauvet A L,Fouletier J. Electrochemical properties of a new type of anode material La1-xSrxCr1-yRuyO3-δ for SOFC under hydrogen and methane at intermediate temperatures [J]. Electrochim Acta,2001,47:987-995. 链接1

[49] Sauvet A L,Fouletier J,Gaillard F,et al. Surface properties and physicochemical characterizations of a new type of anode material,La1- xSrxCr1- yRuyO3- δ,for a solid oxide fuel cell under methane at intermediate temperature [J]. J Catal,2002,209:25-34. 链接1

[50] Sauvet A L,Irvine J T S A. Catalytic activity for steam methane reforming and physical characterization of La1-xSrxCr1-yNiyO3-δ [J]. Solid State Ionics,2004,167:1-8. 链接1

[51] Liu J,Madsen B D,Ji Z Q,et al. A fuel- flexible ceramicbased anode for solid oxide fuel cells [J]. Electrochem SolidState Lett,2002,5:A122-A124.

[52] Chen X J,Liu Q L,Khor K A,et al. High-performance (La,Sr) (Cr,Mn)O3/(Gd,Ce)O2-δ composite anode for direct oxidation of methane [J]. J Power Sources,2007,165:34-40. 链接1

[53] Jiang S P, Chen X J,Chan S H,et al. GDC- impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 anodes for direct utilization of methane in solid oxide fuel cells [J]. J Electrochem Soc,2006,153: A850-A856.

[54] Zhu X,Lv Z,Wei B,et al. Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3- δ impregnated anodes [J]. J Power Sources,2010,195:1793-1798. 链接1

[55] Jiang S P,Ye Y,HeT,et al. Nanostructured palladiumLa0.75Sr0.25Cr0.5Mn0.5O3/Y2O3- ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells [J]. J Power Sources, 2008,185:179-182. 链接1

[56] Sin A,Kopnin E,Dubitsky Y,et al. Antonucci,Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells [J]. J Power Sources,2005,145:68-73. 链接1

[57] Faro M L,Rosa D L,Nicotera I,et al. Electrochemical behavior of propane- fed solid fuel cells based on low Ni content anode catalysts [J]. Electrochimica Acta,2009,54:5280-5285. 链接1

[58] Slater P R,Fagg D P,Irvine J T S. Synthesis and electrical characterization of doped perovskite titanates as potential anode materials for solid oxide fuel cells [J]. J Mater Chem,1997,7: 2495-2498. 链接1

[59] Mukundan R,Brosha E L,Garzon F H. Sulfur tolerant anodes for SOFCs [J]. Electrochem Solid-State Lett,2004,7:A5-A7.

[60] Balachandran U,Eror N G. Electrical conductivity in strontium titanate [J]. J Solid State Chem,1981,9:351-359. 链接1

[61] Kolodiazhnyi T,Petric A. The applicability of Sr- deficient ntype SrTiO3 for SOFC anodes [J]. JElectroceramics,2005,15:5-11. 链接1

[62] Marina O A,Canfield N L,Stevenson J W. Thermal,electrical,and electrocatalytical properties of lanthanum-doped strontium titanate [J]. Solid State Ionics,2002,149:21-28. 链接1

[63] Li X,Zhao H,Shen W,et al. Synthesis and properties of Ydoped SrTiO3 as an anode material for SOFCs [J]. J Power Sources,2007,166:47-52. 链接1

[64] Périllat-Merceroz C,Gauthier G,Roussel P,et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane [J]. Chem Mater,2011,23: 1539-1550. 链接1

[65] Hui S,Petric A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells [J]. J Eur Ceram Soc,20023,22: 1673-1681. 链接1

[66] Vernoux P,Djurado E,Guillodo M. Catalytic and electrochemical properties of doped lanthanum chromites as new anode materials for solid oxide fuel cells [J]. J Am Ceram Soc,2001,84: 2289-2295. 链接1

[67] Ruiz-Morales J C,Canales-vazqzez J,Savaniu C,et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation [J]. Nature,2006,439:568-571. 链接1

[68] Bastidas D M,Tao S W,Irvine J T S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes [J]. J Mater Chem,2006,16:1603-1605. 链接1

[69] Liu Q,Dong X,Xiao G,et al. A novel electrode material for symmetrical SOFCs [J]. Adv Mater,2010,22:5478-5482. 链接1

[70] Ruiz-Morales J C,Canales-Vazquez J,Pena-Martinez J,et al. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells [J]. Electrochim Acta,2006,52:278-284. 链接1

[71] Yang C,Yang Z,Jin C,et al. Sulfur-tolerant redox- reversible anode material for direct hydrocarbon solid oxide fuel cells [J]. Adv Mater,2012,24:1439-1443. 链接1

[72] Matsuzaki Y,Yasuda I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part I. Dependence on temperature,time,and impurity concentration [J]. Solid State Ionics,2000,132:261-269. 链接1

[73] Wang S Z,Liu M L,Winnick J. Stabilities and electrical conductivities of electrode materials for use in H2S-containing gases [J]. J Solid State Electrochem,2001,5:188-195. 链接1

[74] He H P,Gorte R J,Vohs J M. Highly sulfur tolerant Cu-ceria anodes for SOFCs [J]. Electrochem Solid- State Lett,2005,8: A279-A280. 链接1

[75] Kurokawa H,Sholklapper T Z,Jacobson C P,et al. Ceria nanocoating for sulfur tolerant Ni- based anodes of solid oxide fuel cells [J]. Electrochem Solid State Lett,2007,10:B135-B138.

[76] Mukundan R,Brosha E L,Garzon F H. Sulfur tolerant anodes for SOFCs [J]. Electrochem Solid-State Lett,2004,7:A5-A7.

[77] Lu X C,Zhu J H,Yang Z G,et al. Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells [J]. J Power Sources,2009,192:381-384. 链接1

[78] Kurokawa H,Yang L,Jacobson C P,et al. Y- doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells [J]. J Power Sources,2007,164:510-518. 链接1

[79] Zha S W,Cheng Z,Liu M L. A sulfur-tolerant anode material for SOFCs [J]. Electrochem Solid-State Lett,2005,8:A406-A408.

[80] Flytzani-Stephanopoulos M,Sakbodin M,Wang Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides [J]. Science,2006,312:1508-1510. 链接1

相关研究