期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2013年 第15卷 第2期

甲烷水蒸气重整反应研究进展

1. 中国人民解放军防化学院,新能源与能源安全实验室,北京 102205;

2. 中国科学院物理科学研究所,清洁能源实验室,北京 100190

资助项目 :国家重点基础研究发展计划“973计划”资助项目(2012CB215402) 收稿日期: 2012-11-16 发布日期: 2013-01-28 10:49:15.000

下一篇 上一篇

摘要

甲烷水蒸气重整(SMR)作为可与多种高温发电系统耦合的燃料供应过程,目前受到相当普遍的重视。本文从SMR的过程和反应机理、甲烷重整催化剂材料和性能评价、传统反应器和微反应器的SMR性能比较,以及耦合SMR系统的匹配等方面,对SMR反应的研究进展进行了归纳和分析。分析结果表明,目前与固体氧化物燃料电池(SOFC)耦合的SMR反应,尤其是与非传统的微小型反应器匹配的催化剂材料、反应器结构设计、结构与材料一体化的研究都有待深入。

参考文献

[ 1 ] Izquierdo U,Barrio V L,Cambra J F,et al. Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems[J]. International Journal of Hydrogen Energy,2012,37:7026-7033. 链接1

[ 2 ] Momirlan M,Veziroglu T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. International Journal of Hydrogen Energy,2005,30:795-802. 链接1

[ 3 ] Momirlan M,Veziroglu T. Recent directions of world hydrogen production[J]. Renewable & Sustainable Energy Reviews,1999, 3:219-231. 链接1

[ 4 ] 张艳红,汤继强,张清江. CN-23型天然气蒸气转化催化剂在 合成氨装置中的应用[J]. 天然气化工,2000,25(1):41-43. 链接1

[ 5 ] 李琼玖,叶传湘. 天然气转化制合成气工艺方法[J]. 氮肥设计, 1996,34(5):45-48. 链接1

[ 6 ] 李文兵,齐智平. 甲烷制氢技术研究进展[J]. 天然气工,2005, 25(2):165-168. 链接1

[ 7 ] Hou K H,Hughes R. The kinetics of methane steam reforming over a Ni/α- Al2O3 catalyst[J]. Chemical Engineering,2001,82 (2):311-328. 链接1

[ 8 ] Wang S B,Lug Q. Role of CeO2 in Ni/CeO2-A12O3 catalysts for carbon dioxide reforming of methane[J]. Applied Catalysis B: Environment,1998,19(3-4):267-270. 链接1

[ 9 ] Tetsuya S,Masanori S,Hiroyuki M,et al. Partial oxidation of methane over Ni/Mg- AlOxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotal cite-like precursors [J]. Applied Catalysis A:General,2002,223(1-2):35-42. 链接1

[10] Mortolaa V B,Damyanovab S,Zanchetc D,et al. Surface and structural features of Pt/CeO2- La2O3- Al2O3 catalysts for partial oxidation and steam reforming of methane[J]. Applied Catalysis B:Environmental,2011,107:221-236. 链接1

[11] Tokunaga O,Osada Y,Ogasawara S. Reaction of CO2/CH4 as a high-level heat transport system[J]. Fuel,1989,68:990-994. 链接1

[12] Shang R,Guo X,Mu S,et al. Carbon dioxide reforming of methane to synthesis gas over Ni/Si3N4 catalysts[J]. International Journal of Hydrogen Energy,2011,36:4900-4907. 链接1

[13] Claridge J B,York A P E,Brungs A J,et al. New catalysts for the conversion of methane to synthesis gas:Molybdenum and tungsten carbide[J]. Journal of Catalysis,1998,180(1):85-100. 链接1

[14] Gronchi P,Mazzocchia C,Rosso D R. Carbon dioxide reaction with methane on La2O3 supported Rh catalysts[J]. Energy Conversion and Management,1995,36:605. 链接1

[15] Ruckenstein E,Hu Y H. Role of support in CO2 reforming of CH4 syngas over Ni catalysts[J]. Catalysis,1996,162:230-236. 链接1

[16] Masai M,Kado H,Miyake A,et al. Methane reforming by Carbon dioxide and steam over supported Pd,Pt and Rh catalysts[J]. Studies in Surface Science and Catalysis,1988,36:67-71. 链接1

[17] Wang H Y,Au C T. Carbon dioxide reforming of methane to syngas over SiO2- supported Rhodium catalysts[J]. Applied Catalysis A:Gerenal,1997,155(2):239-252. 链接1

[18] 李新生,徐 杰. 催化反应新材料[M]. 河南:河南科学技术出 版社,1996:54-80.

[19] Rostrup Nielsen J R. Relation between Ni crystalline size and carbon- deposition[J]. Catalysis : Science and Technology , 1984,5:111-117.

[20] Michael J Stutz,Nico Hotz,Dimos Poulikakos. Optimization of methane reforming in a microreactor—effects of catalyst loading and geometry[J]. Chemical Engineering Science, 2006,61:4027-4040. 链接1

[21] Georgios D Stefanidis,Dionisios G Vlachos,Niket S Kaisare. Methane steam reforming at microscales:Operation strategies for variable power output at millisecond contact times[J]. American Institute of Chemical Engineers,2009,55(1):180-191. 链接1

[22] Kuznetsov V V,Vitovsky O V,Gasenko O A. Methane steam reforming in an annular microchannel with Rh/Al2O3 Catalyst [J]. Journal of Engineering Thermophysics,2009,18(3):187- 196. 链接1

[23] Kolb G,Hessel V. Micro-structured reactors for gas phase reactions[J]. Chemical Engineering Journal,2004,98:31-38. 链接1

[24] Delsman E R,Laarhoven B J P F,De Croon M H J M,et al. Comparison between conventional fixed- bed and microreactor technology for a portable hydrogen production case[J]. Chemical Engineering Research & Design,2005,83:1063-1075. 链接1

[25] Conant T,Karim A,Datye A. Coating of steam reforming catalysts in non-porous multi-channeled microreactors[J]. Catalysis Today,2007,125:11-15. 链接1

[26] Men Y,Kolb G,Zapf R,et al. Total combustion of propane in a catalytic microchannel combustor[J]. Chemical Engineering Research & Design,2009,87:91-96. 链接1

[27] O’Connell M,Kolb G,Zapf R,et al. Bimetallic catalysts for the catalytic combustion of methane using microreactor technology[J]. Catalysis Today,2009,144:306-311.

[28] Zhai X,Ding S,Cheng Y,et al. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro- reactor[J]. International Journal of Hydrogen Energy,2010,35:5383-5392. 链接1

[29] 银华强,姜胜耀,张佑杰,等. 高温气冷堆甲烷蒸气重整制氢 系统重整器性能数值分析[J]. 原子能科学技术,2007,41 (1):69-73. 链接1

[30] 李广龙,周 利,王鹏杰,等. 高温燃料电池甲烷水蒸气重整反 应催化剂研究分析[J]. 天然气化工,2010,35 :21-25. 链接1

相关研究