期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2014年 第16卷 第2期

δ-TRIP 钢的物理与力学冶金

1. 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819;

2. 中国汽车工程研究院,重庆 400039

资助项目 :国家自然科学基金资助项目(51204051);中央高校基本科研业务费项目(N120507001,N120607001) 收稿日期: 2013-10-09 发布日期: 2014-01-22 13:08:21.000

下一篇 上一篇

摘要

δ-相变诱发塑性(TRIP)钢具有高的强韧性,可达到第三代汽车钢性能要求,且可电阻点焊,是一种新型的具有较高产业化前景的先进汽车钢。主要阐述了δ-TRIP钢的发展、组织与性能、相变与组织演化机理、强韧性机理、电阻点焊工艺与物理冶金机理。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

参考文献

[ 1 ] 马鸣图,易红亮,路洪洲,等. 论汽车轻量化[J]. 中国工程科学, 2009,11(9):20-27. 链接1

[ 2 ] 马鸣图. 先进的汽车用钢 [M]. 北京:化学工业出版社,2008.

[ 3 ] 马鸣图,吴宝榕. 双相钢物理和力学冶金[M]. 2版. 北京:冶金 工业出版社,2010.

[ 4 ] Ohjoon Kwon. New product development and EVI activity at POSCO[R]. Seoul:POSCO,2012.

[ 5 ] Haldar A,Suwas S,Bhattacharjee D. Microstructure and Texture in Steels [M]. London:Springer,2009:185-205.

[ 6 ] Yi Hongliang. δ- TRIP steel[D]. Pohang:Pohang University of Science and Technology,2010.

[ 7 ] Zackay V F,Parker E R,Fahr D,et al. The enhancement of ductility in high strength steels [J]. Transactions of the American Society of Metals,1967,60:252-259.

[ 8 ] Matsumura O,Sakuma Y,Takechi H. TRIP and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel [J]. Scripta Metallurgica,1987,27:1301-1306. 链接1

[ 9 ] Matsumura O,Sakuma Y,Takechi H. Enhacement of elongation by retained austenite in intercritical annealed 0.4C- 1.5Si- 0.8Mn steel [J]. Transactions ISIJ,1987,27:570-579. 链接1

[10] Sakuma Y,Matlock D K,Krauss G. Intercritically annealed and isothermally transformed 0.15Pct C steels containing 1.2 Pct Si-1.5Pct Mn and 4 Pct Ni:Part 2. Effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation [J]. Metallurgical and Materials Transactions A, 1992,23:1233-1241. 链接1

[11] Sugimoto K I,Misu M,Kobayashi M,et al. Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual-phase steel sheet [J]. ISIJ International,1993,33:775-782. 链接1

[12] Sugimoto K I,Usui N,Kobayashi M,et al. Effects of volume fraction and stability of retained austenite on ductility of TRIPaided dual-phase steels [J]. ISIJ International,1992,32:1311- 1318. 链接1

[13] Girault E,Martens A,Jacques P,et al. Comparison of the effects of silicon and aluminium on the tensile behavior of multiphase TRIP- assisted steels [J]. Scripta Materialia,2001,44: 885-892. 链接1

[14] Speer J G,Matlock D K,De Cooman B C,et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Materialia,2003,51:2611-2622. 链接1

[15] Speer J G,Edmonds D V,Rizzo F C,et al. Matlock,partitioning of carbon from supersaturated plates of ferrite,with application to steel processing and fundamentals of the bainite transformation [J]. Current Opinion in Solid State and Materials Science,2004,8:219-237. 链接1

[16] Bhadeshia H K D H. Bainite in Steels [M]. UK Cambrige:IOM Communications Ltd,2001.

[17] Caballero F G,Bhadeshia H K D. Very strong bainite [J]. Current Opinion in Solid State and Materials Science,2004,8: 251-257. 链接1

[18] Niikura M,Morris J W. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures [J]. Metallurgical and Materials Transactions A,1980,11(9):1531-1540. 链接1

[19] Shi Jie,Sun Xinjun,Wang Maoqiu,et al. Enhanced work-hardening behavior and mechanical properties in ultrafine- grained steels with large-fractioned metastable austenite [J]. Scripta Materialia,2010,63(8):815-818. 链接1

[20] Wang Chang,Shi Jie,Wang Cunyu,et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART- annealing [J]. ISIJ International, 2011,51(4):651-656. 链接1

[21] Chatterjee S,Murugananth M,Bhadeshia H K D H. δ- TRIP steel [J]. Materials Science and Technology,2007,23(7): 819-827. 链接1

[22] Yi H L,Lee K Y,Bhadeshia H K D H. Extraordinary ductility in Al-bearing Delta-TRIP steel [J]. Proceedings of the Royal Society A,2011,467:234-243. 链接1

[23] Yi H L,Lee K Y,Bhadeshia H K D H. Mechanical stabilisation phenomenon of retained austenite in δ-TRIP steel [J]. Materials Science and Engineering:A,2011,528:5900-5903. 链接1

[24] Yi H L,Ryu J H,Bhadeshia H K D H,et al. Low- alloy duplex,directly quenched transformation-induced plasticity steel [J]. Scripta Materialia,2011,65(7):604-607. 链接1

[25] Yi H L,Ghosh S K,Liu W J,et al. Non-equilibrium solidification and ferrite in δ-TRIP steel [J]. Materials Science & Technology,2010,26:817-823. 链接1

[26] Yi H L,Lee K Y,Bhadeshia H K D H. Stabilisation of ferrite in hot rolled δ-TRIP steel [J]. Materials Science &Technology, 2011,27:525-529. 链接1

[27] Yi H L,Lee K Y H,Bhadeshia K D H. Spot weldability of δ- TRIP steel containing 0.4 wt % C [J]. Science and Technology of Welding & Joining,2010,15(7):619-624. 链接1

[28] Sakuma Y,Matsumara O,akechi H. Mechanical properties and retained austenite in intercritically heat- treated bainite- transformed steel and their variation with Si and Mn additions [J]. Metallurgical and Materials Transactions A,1991,22:489- 498. 链接1

[29] Sakuma Y,Matsumura O,Akisue O. Influence of C content and annealing temperature on microstructure and mechanical properties of 400 ℃ transformed steel containing retained austenite [J]. ISIJ International,1991,31:1348-1353. 链接1

[30] Chatterjee S,Wang H S,Yang J R,et al. Mechanical stabilisation of austenite[J]. Materials Science and Technology,2006,22 (6):641-644. 链接1

[31] Peterson W,Borchelt J. Maximizing cross tension impact properties of spot welds in 1.5 mm low carbon,Dual- phase,and Martensitic Steels [J]. SAE Technical Paper Series,SAE 2000- 01-2680. 链接1

[32] Pouranvari M,Marashi S P H,Safanama D S. Failure mode transition in AHSS resistance spot welds,Part II:Experimental investigation and model validation’[J]. Materials Science and Engineering:A,A,2011,528(29-30):8344-8352. 链接1

[33] Santella M L,Babu S S,Riemer B W,et al. Influence of microstructure on the properties of resistance spot welds[R]. USA: Oak Ridge National Lab,TN,1998.

[34] Nishi T,Saito T,Yamada A. Valuation of spot weldability of high strength sheet steels for automobile use[J]. Nippon Steel Technical Report,1982(20):37-44.

[35] Khan M I,Kuntz M L,Zhou Y. Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels[J]. Immunology Endocrine and Metabolic Agents inMedicinal Chemistry,2008(2): 294-304. 链接1

[36] Nayak S S,Baltazar Hernandez V H,Okita Y,et al. Microstructure-hardness relationship in the fusion zone of TRIP steel welds[J]. Materials Science and Engineering:A,2012,551: 73-81. 链接1

[37] Radakovic D J,Tumuluru M. An Evaluation of the cross-tension test of resistance spot welds in high- strength dual- phase steels[J]. Welding Journal,2012,91(1):8-15. 链接1

[38] Pouranvari M. Susceptibility to interfacial failure mode in similar and dissimilar resistance spot welds of DP600 dual phase steel and low carbon steel during cross-tension and tensile-shear loading conditions[J]. Materials Science and Engineering:A, 2012,546:129-138.

[39] Joaquin A,Elliott A N A,Jiang C. Reducing shrinkage voids in resistance spot welds[J]. Welding Journal-New York,2007,86 (2):24. 链接1

[40] Sakuma Y,Oikawa H. Factors to determine static strengths of spot- weld for high- strength steel sheets and developments of high-strength steel sheets with strong and stable welding characteristics[J]. Shinnittetsu Giho,2003,378:30-34. 链接1

相关研究