期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2015年 第17卷 第2期

岩浆镍铜铂族矿床成矿过程中流体的作用——对小岩体超大型矿床的启示

1. 兰州大学地质科学与矿产资源学院,兰州 730000;

2. 中国地质调查局西安地质调查中心,西安 710054

资助项目 :国家自然科学(41372095, 41472070, 41072056);高等学校博士学科点专项科研(20120211110023);中国地质调查局项目(12120114044401) 收稿日期: 2014-11-20 发布日期: 2015-01-30 13:08:18.000

下一篇 上一篇

摘要

超大型岩浆镍、铂族元素(PGE)硫化物矿床控制了Ni-PGE的资源量,本文根据地幔岩浆事件中Ni、Cu和PGE等在部分熔融、岩浆结晶和硫化物熔离过程的行为,讨论了岩浆Ni-Cu-PGE硫化物矿床的成矿岩浆类型与规模、成矿金属元素聚集的方式、岩浆演化过程中硫饱和度与硫化物液相不混溶的控制因素,探讨了流体对成矿金属的运移聚集作用等。认为地幔大规模的高度部分熔融(即要求高Mg岩浆)促使地幔硫化物及橄榄石中巨量的Ni和PGE进入岩浆,硫化物熔离富集成矿金属形成大型层状(或通道)岩体赋存的超大型Ni-Cu-PGE硫化物矿床;地幔超临界流体可能大范围内搬运聚集大量Ni-PGE金属元素,对岩浆硫化物矿床成矿可能有重要贡献,是小规模岩浆(小岩体)成矿的可能机制。

关键词

流体 ; 小岩体 ; 成矿作用

图片

图1

图2

参考文献

[ 1 ] 李文渊. 岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J]. 西北地 质,2007,40(2):1-18. 链接1

[ 2 ] 宋谢炎,胡瑞忠,陈列锰. 铜、镍、铂族元素地球化学性质及其 在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J]. 地 学前缘,2009,16(4):287-305. 链接1

[ 3 ] Naldrett A J. Magmatic Sulfide Deposits:Geology,Geochemistry and Exploration [M]. Berlin:Springer Verlag,Heidelberg, 2004.

[ 4 ] Naldrett A J. World- class Ni- Cu- PGE deposits:Key factors in their genesis [J]. Mineralium Deposita,1999,34(3):227-240. 链接1

[ 5 ] Dietz R S. Sudbury structure as an astrobleme [J]. Journal of Geology,1964,72(4):412-434. 链接1

[ 6 ] Lambert D D,Foster J G,Frick L R,et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits;new insights from the Re-Os isotope system [J]. Economic Geology,1998,93(2):121-136. 链接1

[ 7 ] Evans-Lamswood D M,Butt D P,Jackson R S,et al. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit,Labrador [J]. Economic Geology,2000, 95(4):749-769. 链接1

[ 8 ] Tang Qingyan,Li Chusi,Zhang Mingjie,et al. Detrital zircon constraint on the timing of amalgamation between Alxa and Ordos,with exploration implications for Jinchuan-type Ni-Cu ore deposit in China [J]. Precambrian Research,2014,255:748- 755. 链接1

[ 9 ] Boudreau A E,McCallum I S. Concentration of platinum-group elements by magmatic fluids in layered intrusions [J]. Economic Geology,1992,87(7):1830-1848. 链接1

[10] Fleet M E,Wu T W. Volatile transport of precious metals at 1 000 ℃:Speciation,fractionation,and effect of base- metal sulfide [J]. Geochimica et Cosmochimica Acta,1995,59(3): 487-495. 链接1

[11] Fleet M E,Crocket J H,Stone W E. Partitioning of platinumgroup elements (Os,Ir,Ru,Pt,Pd) and gold between sulfide liquid and basalt melt [J]. Geochimica et Cosmochimica Acta, 1996,60(13):2397-2412. 链接1

[12] Blackburn J M,Long D P,Cabanas A,et al. Deposition of conformal copper and nickel films from supercritical carbon dioxide [J]. Science,2001,294(5540):141-145. 链接1

[13] Fiorentini M L,Beresford S W. Role of volatiles and metasomatized subcontinental lithospheric mantle in the genesis of magmatic Ni-Cu-PGE mineralization [J]. Terra Nova,2008,20(5): 333-340. 链接1

[14] Barnes S J,Picard C P. The behavior of platinum- group elements during partial melting,crystal fractionation,and sulfide segregation [J]. Geochimica et Cosmochimica Acta,1993,57 (1):79-87. 链接1

[15] Snow J E,Schmidt G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle [J]. Nature,1998,391 (6663):166-169. 链接1

[16] Day J M D,Pearson D G,Taylor L A. Highly siderophile element constraints on accretion and differentiation of the EarthMoon System [J]. Science,2007,315(5809):217-219. 链接1

[17] Yuan Feng,Zhou Taofa,Zhang Dayu,et al. Siderophile and chalcophile metal variations in basalts:Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province,Xinjiang Province,China [J]. Ore Geology Reviews,2012,45:5-15. 链接1

[18] Kamenetsky V S,Maas R,Fonseca R O C,et al. Noble metals potential of sulfide-saturated melts from the subcontinental lithosphere [J]. Geology,2013,41(5):575-578. 链接1

[19] Peach C L,Mathez E A,Keays R R. Sulfide melt silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB [J]. Geochimica et Cosmochimica Acta,1990,54(12):3379-3389. 链接1

[20] Bezmen N I,Asif M,Brugmann G E,et al. Distribution of Pd,Rh,Ru,Ir,Os and Au between sulfide and silicate melts [J]. Geochimica et Cosmochimica Acta,1994,58(4):1251- 1260. 链接1

[21] Keays R R. The role of komatiitic and picritic magmatism and Ssaturation in the formation of ore-deposits [J]. Lithos,1995,34 (1-3):1-18. 链接1

[22] Chai G,Naldrett A J. The Jinchuan ultramafic intrusion:Cumulate of a high- Mg basaltic magma [J]. Journal of Petrology, 1992,33(2):277-303. 链接1

[23] Arndt N. The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits [J]. Economic Geology, 2013,108(8):1953-1970. 链接1

[24] Ripley E M,Li C. Sulfide saturation in mafic magmas is external sulfur required for magmatic Ni-Cu- (PGE) ore genesis [J]. Economic Geology,2013,108(1):45-58. 链接1

[25] Barnes S J,Makovicky E,Makovicky M,et al. Partition coefficients for Ni,Cu,Pd,Pt,Rh and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid [J]. Canadian Journal of Earth Sciences,1997,34 (4):366-374. 链接1

[26] Maier W D,Groves D I. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits [J]. Mineralium Deposita,2011,46(8):841-857. 链接1

[27] Scoates J S,Friedman R M. Precise age of the platiniferous Merensky reef,Bushveld complex,south Africa,by the U-Pb zircon chemical abrasion ID-TIMS technique [J]. Economic Geology,2008,103(3):465-471. 链接1

[28] Premo W R,Premo W R,Helz R T,et al. U-Pb and Sm-Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains,Montana [J]. Geology,1990,18(11): 1065-1068. 链接1

[29] Paces James B,Miller Jr James D. Precise U-Pb ages of Duluth Complex and related mafic intrusions,northeastern Minnesota: Geochronological insights to physical,petrogenetic,paleomagnetic , and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System [J]. Journal of Geophysical Research:Solid Earth (1978—2012),2012,98(B8):13997- 14013 链接1

[30] Kamo L,Czamanske G K,Krogh T E. A minimum U-Pb age for Siberian flood- basalt volcanism [J]. Geochimica et Cosmochimica Acta,1996,60(18):3505-3511. 链接1

[31] Lightfoot P C,Evans-Lamswood D. Structural controls on the primary distribution of mafic- ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces [J]. Ore Geology Reviews,2015,64:354- 386. 链接1

[32] 汤中立,李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地 质对比[M]. 北京:地质出版社,1995.

[33] Nicholson S W,Cannon W F,Schulz K J. Metallogeny of the Midcontinent rift system of North America [J]. Precambrian Research,1992,58(1-4):355-386. 链接1

[34] Li C,Naldrett A J. Melting ions of gneissic inclusions with enclosing magma at Voisey’s Bay,Labrador,Canada [J]. Economic Geology,2000,95(4):801-814. 链接1

[35] Zhang Mingjie,Kamo S L,Li C,et al. Precise U- Pb zirconbaddeleyite age of the Jinchuan sulfide ore- bearing ultramafic intrusion,western China [J]. Mineralium Deposita,2010,45 (1):3-9. 链接1

[36] Li C,Ripley E M. The Giant Jinchuan Ni-Cu- (PGE) deposit: Tectonic setting,magma evolution,ore genesis and exploration implications [M]// Li C,Ripley E M,eds. Magmatic Ni- Cu and PGE Deposits:Geology,Geochemistry and Genesis:Reviews in Economic Geology (Volume 17). Denver,Colorado: Society of Economic Geologists,Inc,2011:163-180.

[37] Li C,Barnes S J,Makovicky E,et al. Partitioning of nickel, copper,iridium,rhenium,platinum,and palladium between monosulfide solid solution and sulfide liquid [J]. Geochimica et Cosmochimica Acta,1996,60(7):1231-1238. 链接1

[38] Campbell I H,Naldrett A J. The influence of silicate:Sulfide ratio on the geochemistry of the magmatic sulfides [J]. Economic Geology,1979,74(6):1503-1506. 链接1

[39] Campbell I H,Naldrett A J,Barnes S J. A model for the origin of the platinum- rich sulfide horizons in the Bushveld and Stillwater complexes [J]. Journal of Petrology,1983,24(2):133- 165. 链接1

[40] David H E,Lorand J P. Mantle sulfide geobarometry [J]. Geochimica et Cosmochimica Acta,1993,57(10):2213-2222. 链接1

[41] Mavrogenes J A,O’Neill H S. The relative effect s of pressure,temperature and oxygen fugacity on the solubility of sulfide in mafic magmas [J]. Geochimica et Cosmochimica Acta, 1999,63(7/8):1173-1180. 链接1

[42] Haughton D R,Roeder P L,Skinner B J. Solubility of sulfur in mafic magmas [J]. Economic Geology,1974,69(4):451-467. 链接1

[43] Ballhaus C,Tredoux M,Spaeth A. Phase relations in the Fe-NiCu- PGE- S system at magmatic temperature and application to massive sulfide ores of the Sudbury Igneous Complex [J]. Journal of Petrology,2001,42(10):1911-1926. 链接1

[44] Moretti R,Papale P,Ottonello G. A model for the saturation of C-O-H-S fluids in silicate melts [J]. Geological Society,London,Special Publications,2003,213:81-101. 链接1

[45] Buchanan D L,Nolan J. Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld- Complex [J]. The Canadian Mineralogist,1979,17(2): 483-494. 链接1

[46] Vogt J H L. Beitrage zur genetischen classification der durch magmatische differentiations processe und der durch pneumatolyse entstandenen erzvorkomme [J]. Zeitschrift Prakt Geol, 1894,2:391-399.

[47] Wendlandt R F. Sulfide saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist, 1982,67(9210):877-885. 链接1

[48] Li C,Ripley E M. Empirical equations to predict the sulfur content of mafic magma at sulfide saturation and applications to magmatic sulfide deposits [J]. Mineralium Deposita,2005,40 (2):218-230. 链接1

[49] Keays R R,Lightfoot P C. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits:Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts [J]. Mineralium Deposita,2010,45(3):241-257. 链接1

[50] Maier W D,Barnes S J,De Waal S A. Exploration for magmatic Cu-Ni-PGE sulphide deposits;a review of recent advances in the use of geochemical tools,and their application to some South African ores [J]. South African Journal of Geology, 1998,101(3):237-253. 链接1

[51] Ripley E M,Li C,Shin D. Paragneiss assimilation in the genesis of magmatic Ni- Cu- Co sulfide mineralization at Voisey’s Bay,Labrador:δ34S,δ13C,and Se/S Evidence [J]. Economic Geology,2002,97(6):1307-1318. 链接1

[52] Ripley E M,Lightfoot P C,Li C,et al. Sulfur isotopic studies of continental flood basalts in the Noril’sk region:Implications for the association between lavas and ore-bearing intrusions [J]. Geochimica et Cosmochimica Acta,2003,67(15):2805-2817. 链接1

[53] Maier W D,Arndt N T,Curl E A. Progressive crustal contamination of the Bushveld Complex [J]. Contributions to Mineralogy and Petrology,2000,140(3):316-327. 链接1

[54] Lambert D D,Frick L R,Foster J G,et al. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic sulfide system,Labrador,Canada:II. Implications for parental magma chemistry,ore genesis,and metal redistribution [J]. Economic Geology,2000,95(4):867-888. 链接1

[55] Li X H,Su L,Chung S L,et al. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni- Cu sulfide deposit:Associated with the ~825 Ma south China mantle plume? [J]. Geochemistry,Geophysics,Geosystems,2005,6 (11):16-32. 链接1

[56] Philips G N,Evans K A. Role of CO2 in the formation of gold deposits [J]. Nature,2004,429(6994):860-863. 链接1

[57] Hanley J J,Mungall J E,Pettke T,et al. Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex,Ontario,Canada [J]. Mineralium Deposita,2005,40(3):237-256. 链接1

[58] Hedenquist J W,Aoki M,Shinohara H. Flux of volatiles and ore- forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano [J]. Geology,1994,22(7):585-588. 链接1

[59] Simmons S F,Brown K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit [J]. Science,2006,314(5797):288-291. 链接1

[60] 张 生,熊小林,Seward T M. 成矿元素的气相迁移与实验研 究[J]. 地学前缘,2009,16(1):68-75. 链接1

[61] Olmez I,Finnegan D L,Zoller W H. Iridium emissions from Kilauea Volcano [J]. Journal of Geophysical Research:Solid Earth,1986,91(B1):653-663. 链接1

[62] Gemmell B J. Geochemistry of metallic trace elements in furmarolic condensates from Nicaragua and Costa Rican volcanos [J]. Journal of Volcanology and Geothermal Research,1987,33(1- 3):161-181. 链接1

[63] Rubin K H. Degassing of metals and metalloids from erupting seamount and mid- ocean ridge volcanoes [J]. Geochimica et Cosmochimica Acta,1997,61(17):3525-3542. 链接1

[64] Giggenbach W F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries [J]. Economic Geology,1992,87(7):1927-1944. 链接1

[65] Taran Y A,Bernard A,Gavilanes J C,et al. Native gold in mineral precipitates from high- temperature volcanic gases of Colima volcano,Mexico [J]. Applied Geochemistry,2000,15 (3):337-346. 链接1

[66] Quisefit J P,Toutain J P,Bergametti G,et al. Evolution versus cooling of gaseous volcanic emissions from Momtombo volcano,Nicaragua [J]. Geochimica et Cosmochimica Acta,1989, 53(10):2591-2608. 链接1

[67] Crowe B R,Finnegan D L,Zoller W H,et al. Trace element geochemistry of volcanic gases and particles from 1983—1984 eruptive episodes of Kilauea Volcano [J]. Journal of Geophysical Research:Solid Earth,1987,92(B13):13708-13714. 链接1

[68] Symonds R B,Rose W,Reed M H,et al. Volatilization,transport and sublimation of metallic and nonmetallic elements in high temperature gases at Merapi Volcano,Indonesia [J]. Geochimica et Cosmochimica Acta,1987,51(8):2083-2101. 链接1

[69] Williams- Jones A E,Heinrich C A. Vapor transport of metals and the formation of magmatic- hydrothermal ore deposits [J]. Economic Geology,2005,100(7):1287-1312. 链接1

[70] Heinrich C A,Driesner T,Stefansson A,et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits [J]. Geology,2004,32(9): 761-764. 链接1

[71] Ulrich T,Guenther D,Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits [J]. Nature,1999,399(6737):676-679. 链接1

[72] Jana D,Walker D. Core formation in the presence of various C—H—O volatile species [J]. Geochimica et Cosmochimica Acta,1999,63(15):2299-2310. 链接1

[73] Lowenstern J B,Mahood G A,Rivers M L. Evidence for extreme partitioning of copper into a magmatic vapor phase [J]. Science,1991,252(5011):1405-1409. 链接1

[74] Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems [J]. Mineralium Deposita,2001,36(6): 490-502. 链接1

[75] Yang Kaihui,Scott S D. Possible contribution of a metal- rich magmatic fluid to a sea- floor hydrothermal system [J]. Nature, 1996,383(6599):420-423. 链接1

[76] Ballhaus C,Sylvester P. Noble metal enrichment processes in the merensky reef,Bushveld complex [J]. Journal of Petrology,2000,41(4):545-561. 链接1

[77] Wirth R,Reid D,Schreiber A. Nanometer- sized platinumgroup minerals (PGM) in base metal sulfides:New evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit,Bushveld Complex,South Africa [J]. The Canadian Mineralogist,2013,51(1):143-155. 链接1

[78] Malitch K N,Auge T,Badanina I Yu,et al. Os- rich nuggets from Au- PGE placers of the Maimecha- Kotui Province,Russia:A multi- disciplinary study [J]. Mineralogy and Petrology, 2002,76(1/2):121-148. 链接1

[79] Burgisser A,Scaillet B,Harshvarhan H. Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent [J]. Journal of Geophysical Research:Solid Earth,2008,113(B12):204-217. 链接1

[80] Simon A C,Pettke T,Candela P A,et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage [J]. Geochimica et Cosmochimica Acta,2006,70(22):5583-5600. 链接1

[81] Fu Piaoer,Tang Qingyan,Zhang Mingjie,et al. The ore genesis of Kalatongke Cu-Ni Sulfide Deposit,west China [J]. Acta Geologica Sinica,2012,86(3):568-578. 链接1

[82] Tang Qingyan,Zhang Mingjie,Li C,et al. The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere [J]. Chemical Geology,2013,339:84-91. 链接1

[83] 傅飘儿. 新疆北部晚古生代岩浆铜镍硫化物矿床成因:岩石 及流体地球化学研究[D]. 兰州:兰州大学,2012. 链接1

[84] 汤庆艳. 峨眉山二叠纪地幔柱岩浆铜镍铂族硫化物矿床成矿 体系对比[D]. 兰州:兰州大学,2013. 链接1

[85] Zhang Mingjie,Tang Qingyan,Hu Peiqing,et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu- (PGE) sulfide ore-bearing ultramafic intrusion,Western China [J]. Chemical Geology,2013,339:301-312. 链接1

[86] Konnikov E G,Meurer W P,Neruchev S S,et al. Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic-ultramafic layered complex,eastern Siberia,Russia [J]. Mineralium Deposita,2000,35(6):526-532. 链接1

相关研究