《1、 引言》

1、 引言

新兴有机污染物(EOC),包括药物和个人护理品(PPCP)、内分泌干扰物、阻燃剂、全氟或多氟烷基化合物(PFAS)、农药等,对水环境的影响日益突出,成为备受关注的一类污染物。然而,大多数EOC尚未受到法规规范[1]。它们是工农业生产和日常生活中的必需物质,可通过污水处理厂出水[2]、垃圾渗滤液[34]、畜禽养殖废水[5]和农田地表径流[6]等途径进入水环境。由于人类持续消费和使用,现有污水处理技术去除率低,其在各类水体中被普遍检出,浓度通常为10‒9~10‒6 g·L‒1 [711]。一些EOC即使在10‒9 g·L‒1水平也具有潜在的生态风险和人体健康风险[1215]。例如,烷基酚表面活性剂、双酚类化合物、邻苯二甲酸酯类增塑剂、激素、农药和PFAS等被公认为潜在的内分泌干扰物[16]。

由于水环境中有机污染物数量巨大,有必要确定重点管控对象,将有限的监测资源用于获取与生态系统和人体健康风险息息相关的数据。因此,各国和组织先后开展了优先污染物筛选和排序研究,美国环境保护署(EPA)于1977年提出了129种水环境优先污染物用于水环境监测和控制,并于1998年提出了“饮用水化学候选污染物清单”(CCL),以识别饮用水中未管控的污染物,作为进一步管控的依据,该清单每五年更新一次,最新版本为CCL4 † 。《欧盟水框架指令》(2013/39/EU指令)规定了45种优先控制污染物的地表水环境质量标准[17],并于2015年建立了候选物质清单(2015/485/EU指令),该清单于2018年更新(2018/840/EU指令)[18]。由于数据不足,EOC往往被排除在传统的优先排序方案之外,为了解决这一问题,NORMAN组织(欧洲委员会资助的EOC科学研究与政策管理的接口组织)根据EOC环境监测和毒性数据的可利用性,基于决策树将污染物分为六大类别,利用风险评估指标分别筛选各类别的优先污染物[19]。类似地,我国环境保护部于2017年发布了《优先控制化学品名录(第一批)》,该名录涵盖了22种具有危险和持久性化学品,包括17种有机污染物和5种重金属[20]。然而,目前的优先污染物名录主要针对常规污染物,对EOC的关注十分有限。

为了筛选优先污染物,目前已建立了多种基于生态风险和人体健康风险的优先排序方法[2124]。现有的筛选体系主要包括污染物识别、暴露评估、危害表征和风险分析。污染物识别用于聚集潜在污染物,以建立筛选的候选物质清单;暴露评估是指通过环境监测或模型,估算各潜在暴露途径的暴露浓度等参数,对人体潜在暴露量进行定性或定量评估。危害表征用于评估污染物固有危害,如持久性、生物累积性和毒性(PBT)等,适用于欧盟化学品的注册、评估、授权和限制法规。该方法未考虑环境监测水平[25],只适用于筛选具有潜在危害效应的化学物质,需要结合环境存在情况,进一步评估其风险状况。风险评估是对污染物的暴露水平和危害效应进行综合评价的方法。通常采用商值法,即环境浓度与预测无效应浓度(PNEC)的比值。其他风险指标,如污染物质量负荷与毒性阈值的比值[26],污染物浓度超过毒性阈值的频率[24]及浓度超出毒性阈值的程度[27]等,也是风险评估中的常用指标。但现有的风险指标均未考虑到污染物的多种特性,如PBT特性、检出浓度、检出频率、人体健康风险等。因此,越来越多的研究采用多标准筛选方法[21,2829],该方法首先对各评价标准进行定量或半定量评估,再利用经验算法计算综合分值。常用的经验算法有加权平均法和最敏感值法。例如,《欧盟水框架指令》(WFD)依据暴露指数和危害指数筛选优先控制污染物,危害指数是各种危害效应(如水生生物毒性、生物累积性和人体健康效应)的加权平均值[30]。《美国超级基金法》(CERCLA)建立的“国家优先名录”中污染物效应指数为五种毒性指标(人体慢性毒性、致癌性、水生生物毒性、燃烧性和放射性)中的最敏感值[31]。多标准筛选方法综合考虑了污染物生态风险和人体健康风险,但忽视了各标准之间的相关性,需要主观判断各评价标准的相对重要性。此外,该方法缺乏明确的阈值来区分污染物是否具有潜在风险。

随着我国经济社会的快速发展和繁荣,EOC的生产、消费和排放量不断增加,环境污染问题日益严重,迫切需要确定我国水环境中的重点管控对象。目前,已有一些研究对我国水环境中的EOC进行优先排序。Sui等[29]根据消费量、污水处理厂去除率和生态效应对我国地表水中39种药物进行排名。Bu等[32]根据消费量和生态效应对593种药物进行排名。Li等[33]使用类似的策略,根据消费量、持久性、生物累积性和生态效应对地表水中100种药物进行排序,随后利用新的排序方法对其重新排名[34]。另一项研究[35]对我国地下水补给方案中151种有机污染物进行排名。已有研究对我国地表水中优先EOC筛选做出了很大贡献,但仍存在以下不足:①主要侧重于药物等特定类别污染物筛选和排序,忽视多类别EOC的同时筛选;②注重生态风险,忽视人体健康效应;③根据模型估算地表水中EOC的浓度,与监测水平相比存在较大的不确定性;④根据个人或专家经验,主观判断各个标准权重的相对重要性;⑤未深入分析筛选结果的不确定性。针对以上不足,我国亟需提出一套集环境监测、生态风险、人类健康风险和不确定性分析为一体的地表水中多类EOC筛选和排序方案。近5年来,我国地表水中EOC的监测数据逐渐增加,为该方案的建立提供了良好的数据支撑。

本文旨在建立一种多标准筛选方法,既能解决现有优先筛选方法的局限性,又能筛选出中国地表水中优先EOC。因此,以EOC的检出浓度、检出频率、持久性、生物累积性、生态毒性和人体健康效应为筛选指标,采用多变量分析方法确定各标准的相对重要性,根据优先级分析和可用数据数量分析,划分污染物的优先等级和不确定性类别。据我们所知,本文首次利用我国地表水的监测浓度对多类EOC(如阻燃剂、激素、PPCP、农药、酚类化合物、PFAS、增塑剂、甜味剂)进行优先排序。

《2、 方法》

2、 方法

EOC的筛选指标包括我国地表水中检出浓度、检出频率、持久性、生物累积性、生态毒性和人体健康效应。数据收集和筛选方法见第2.1小节。优先控制污染物筛选方案包含以下步骤:

(1)收集了2013—2018年间我国地表水中EOC的存在数据,在缺乏数据的情况下,收集不受年份限制;

(2)6个筛选指标数据的收集与标准化;

(3)利用PCA方法分析污染物的危害指数(持久性、生物累积性、生态毒性和人体健康效应),并根据危害指数筛选候选污染物;

(4)根据污染物存在数据对通过第(3)步筛选的物质做进一步筛选;

(5)保留风险商大于0.1的EOC,即使这些污染物被第(3)或第(4)步排除;

(6)计算EOC的优先指数,并进行排序;

(7)评估优先筛选过程中的不确定性;

(8)基于污染物的优先等级和不确定类别,提出优先控制EOC名录。

优先控制EOC的筛选流程如图1所示(数据标准化的功能函数见附录A中的表S1)。

《图1》

图1 基于暴露标准和危害标准对EOC优先排序的多标准分析方法流程图。PC:主成分;EP:暴露指数;RQeco:生态风险商;RQhum:人体健康风险商。Groups I~IV:最高、高、中、低优先等级;Category 1:具有充足的浓度和毒性数据的污染物;Category 2:缺乏浓度数据的污染物;Category 3:缺乏生态或人体健康效应数据的污染物;Category 4:浓度和毒性数据均缺乏的污染物。

《2.1 数据收集》

2.1 数据收集

《2.1.1. 暴露数据》

2.1.1. 暴露数据

本文收集了2013—2018年我国大陆地区地表水中EOC的检出浓度和检出频率数据,排除检出浓度和频率不明确的文献,共收集参考文献225份(见附录A中的表S2),识别出433种EOC,排除了28种已列入我国地表水常规监测或者已被禁或限的物质(见附录A中的表S3),其余405种物质作为主要的候选污染物。候选污染物包括农药、工业化学品和PPCP,可分为9类:阻燃剂、激素、个人护理品、农药、酚类化合物、PFAS、药物、增塑剂和甜味剂。

对数据进行如下处理:①当污染物未检测时,按方法检出限(MDL)半值计算检出浓度;②优先使用污染物检出浓度和检出频率的中值,该值不易受异常值和未检出的影响;③当缺乏中值时,使用平均检出浓度和频率;④当一种物质被多篇文献报道时,分别计算EOC检出浓度和检出频率的第90百分位数和第50百分位数,作为优先排序的浓度和频率。

《2.1.2. 持久性和生物累积性》

2.1.2. 持久性和生物累积性

持久性用美国EPA Estimation Programs Interface (EPI) Suite软件中BIOWIN v4.1模块估算的降解半衰期(DHL)来表示[36],选择最终生物降解时间为唯一终点,其单位是污染物完全矿化所需要时间的半定量值,数值5表示最终生物降解周期为小时,4为天,3为周,2为月,1为更长时间。生物累积性与辛醇-水分配系数相关,由于多种EOC存在酸碱解离,生物累积性用pH7下的logDowDow为正辛醇/水分配比)表示,该数据来自SciFinder [37]。持久性和生物累积性数据见附录A中的表S4。

《2.1.3. 生态毒性》

2.1.3. 生态毒性

生态毒性表示为生态预测无效应浓度(PNECeco),其为长期/慢性毒性,即无观察效应浓度(NOEC)或短期/急性毒性,即半数效应浓度(EC50)和半致死浓度(LC50),与相应的评估因子(AF)的比值。根据欧洲风险评估技术指南[38],当三种营养级生物(藻类、无脊椎动物、鱼类)的慢性毒性数据均可用时,评估因子为10,两种可用时为50,一种可用时为100。若NOEC数据缺乏,采用急性毒性数据,评估因子设为1000。

NOEC和EC50/LC50来自美国EPA ECOTOX知识库系统[39]、美国Agriculture Research Service Pesticide Properties数据库[40]和其他研究[4164]。当某营养级生物有多个慢性或急性毒性数据,选用最小值,以保护最敏感的生物。当实验数据缺乏时,利用美国EPA EPI Suite软件中的生态结构活动关系模型(ECOSAR)来预测三种营养水平生物的NOEC值[36]。生态毒性的详细数据来源如附录A中的表S4所示。

《2.1.4. 人体健康效应》

2.1.4. 人体健康效应

利用PNEChum (ng·L-1)来评估人体健康效应,该方法假设成人主要通过饮用水和食用鱼类两种方式摄入水环境中的污染物[65]。PNEChum根据每日允许摄入量(ADI)或参考剂量(RfD)或最小风险水平(MRL)数据,按公式(1)计算。

PNEChum=1000×ADI×BW×ATIngRDW+BCF×IngRF×EF×ED(1)

式中,1000为μg·L-1与ng·L-1的换算系数;当ADI数据不可用时,用RfD或MRL来替代;BW为体重,我国成年人平均体重为63 kg;AT为成年人平均暴露时间,设为10 950 d;IngRDW为成人饮用水量,设为2 L·人-1·d-1;BCF为EOC在鱼类中的生物富集系数,单位为L·kg-1,数据来自美国EPA Chemistry Dashboard [66];IngRF为成年人食用鱼量,设为0.0175 L·人-1·d-1;EF为暴露频率,设为350 d·a-1;ED为暴露时间,设为30年。对于大多数EOC,PNEChum用ADI计算得到。

农药的ADI值来自我国食品安全国家标准(GB2763—2019)[67]、联合国粮农组织和世界卫生组织(FAO/WHO)农药残留联席会议(JMPR)[68]和国际化学品安全规划署INCHEM [69];激素、个人护理品、药物和酚类化合物的ADI来自FAO/WHO食品添加剂联合专家委员会(JECFA)[70]、美国食品和药物管理局(FDA)[71]、澳大利亚农药和兽药管理局[72]、欧洲药品管理局[7375]和其他来源[6,7684];阻燃剂和PFAS的MRL值来自美国毒物和疾病登记署(ATSDR)[85];RfD数据来自美国EPA综合风险信息系统(IRIS)[86]。

当缺乏ADI、RfD或MRL值时,将未观察到不良反应水平(NOAEL)或观察到的最低不良反应水平(LOAEL)与不确定因子100的比值作为ADI值。LOAEL通常被报道为最低中毒剂量(TDLo)或相当于最低日治疗剂量[26]。TDLo数据来自ChemIDplus数据库[87],最低日治疗剂量来自在线医学资源(RxList)[88]。当缺乏实验数据时,利用Lazar毒性预测软件[89]估算LOAEL值,不确定因子设为1000。当没有任何毒性数据时,使用毒理学关注阈值(TTC)来估算ADI值[90],这是化学药品保守通用的人体暴露阈值,低于此阈值,化学品的终身暴露不会对人体健康造成明显的风险[91]。根据Cramer类别,将TTC分为Cramer I、II和III三个危害级别,相对应的TTC阈值分别为1800 μg·d-1、540 μg·d-1和90 μg·d-1,我国成人平均体重为63 kg,对应ADI分别为28.6 μg·kg-1·d-1、8.6 μg·kg-1·d-1和1.4 μg·kg-1·d-1。Cramer类别来自ToxTree v3.1.0.185软件。人体健康参数的详细数据来源如表S4所示。

《2.2 优先排序》

2.2 优先排序

《2.2.1. 数据标准化》

2.2.1. 数据标准化

为了便于数据间的比较,利用附录A中表S1的功能函数将6个筛选标准相关的数据转化为0~1范围内的无量纲项,标准化方法借鉴Kumar和Xagoraraki [28]先前报道的功能函数。环境浓度、PNECeco和PNEChum值分布广泛,分别跨越6个、15个和9个数量级。利用log2-和log10-分别对浓度数据和PNEC数据(包括PNECeco和PNEChum)进行转换,以解决数据过度聚集和分散较差等问题(见附录A中的图S1)。为了使标准化数据呈现更合理的正态分布,仔细地选择功能函数的最大值和最小值,使大多数EOC计算的无量纲分值在0~1之间呈现良好分布(图S1)。利用表S1中的功能函数计算污染物标准化值,若污染物的数值大于所选最大值则标准化值为1,小于所选最小值则该标准化值为0,若特定标准的数据缺乏,将标准化值设置为0.5 [28]。候选EOC的标准化值如附录A中的表S5所示。

《2.2.2. 多变量分析》

2.2.2. 多变量分析

主成分分析(PCA)是一种常见的多变量分析方法。主成分1(PC1)可解释总方差的最大值,可用作新的累积变量,用于EOC的筛选和排名[92]。已有研究用PC1值来表征挥发性有机污染物降解能力[93]、不同营养级生物的综合毒性[9495]以及污染物的PBT特性[96]。本文采用PCA方法对污染物持久性、生物累积性、生态毒性和人体健康效应的标准化值进行分析,并定义PC1hazard为危害指数来综合评价污染物危害特性。同样,定义PC1exposure为暴露指数,其为检出浓度和检出频率的函数值。选用20种POP类污染物作为参考物质来验证PCA方法的合理性。20种POP类污染物的持久性、生物累积性、生态毒性和人体健康效应数据列于表S4中。采用聚类分析对具有相似危害特性的污染物进行分类。k-均值聚类法具有操作简单、易于实现、对异常值不敏感等优点,但需要预先设置聚类数(k),k值的设置会影响聚类结果。为了选择最佳的k值,以20种POP类污染物作为参考物质,k值从2逐级增加到某一临界值,即20种POP聚为一类的临界值,并以此值作为聚类数。

《2.2.3. 风险商计算》

2.2.3. 风险商计算

利用生态风险商(RQeco)和人体健康风险商(RQhum)分别对候选EOC的生态风险和人体健康风险进行评价,计算公式如式(2)和式(3)所示。

RQeco=MECPNECeco(2)

RQhum=MECPNEChum(3)

式中,MEC为各个EOC监测浓度的第90百分位数;PNECeco和PNEChum的详细描述分别见第2.1.3节和第2.1.4节。

《2.2.4. 评分》

2.2.4. 评分

利用表S1中的功能函数将危害指数和暴露指数转换为0~1范围内的无量纲项,并将暴露指数和危害指数标准化值的乘积定义为污染物排序的优先指数。

《2.3 不确定分析》

2.3 不确定分析

理想情况下,污染物的存在数据应能反映我国地表水污染的总体状况。然而,由于资源的限制以及现有监测活动关注度的差异,EOC的监测数据量存在较大差异。基于以上原因,有必要根据监测数据的可获得性,对污染物存在状况进行不确定性分析。若监测数据覆盖4个及以上省份、50个及以上监测断面,则检出浓度和检出频率的不确定性值设置为0;若污染物的监测数据覆盖4个以下省份或50个以下监测断面,则不确定性值设置为0.25;若无监测数据,则不确定性值设为0.5,该阈值的选择主要参考NORMAN优先排序框架和本文的数据分布。与实验数据相比,基于模型预测的生态毒性或ADI值具有较大的不确定性,若PNEC的计算基于实验数据,则生态毒性和人体健康效应不确定性分值设为0;基于模型预测,设为0.25;缺乏毒性数据,设为0.5。对于其他标准,根据数据有无分别设置0和0.5的不确定性值,6个标准的不确定性分值的算数平均值作为最终的不确定性总分。

《3、 结果与讨论》

3、 结果与讨论

《3.1 危害表征》

3.1 危害表征

405种候选污染物及20种POP的PCA分布如图2(a)所示。其中,PC1hazard可解释总方差的49.4%,对总方差贡献最大。持久性、生物累积性、生态毒性和人体健康效应4种危害参数均随PC1hazard值的增加而增大,PC1hazard呈现出危害效应的预期趋势,作为危害指数。405种污染物的危害指数分布在-2.79~2.61间(见附录A中的表S6),危害指数越高,综合危害效应越强。POP具有最高PC1hazard值(中值为2.39),表明将PC1hazard值作为4种危害的综合指数是可行的。总体而言,PFAS的危害指数最高,中值为1.09,其次为激素(中值为0.47)和农药(中值为0.23)。其他类别污染物的危害指数中值排序如下:阻燃剂(-0.06)>酚类化合物(-0.08)>药品(-0.39)>个人护理品(-0.41)。甜味剂和增塑剂的危害指数最低,中值低于-0.73(见附录A中的图S2)。采用多元线性回归探究危害指数和原来变量数据之间的线性关系,线性关系公式(4)所示,相关系数(R2)高于0.999。

(4)

《图2》

图2 (a)持久性、生物累积性、生态毒性和人体健康效应的PCA分布图(PC1hazard为综合危害指数);(b)各个类别污染物在4种聚类类别中的占比。注:(b)中参考物质为US EPA CCL4、EU WFD和EU WFD候选列表中列出的EOC;(a)中三角形区域为参考物质分布区域。

PC2hazard可解释总方差的23.9%,前两个成分共占据总方差的73.3%。PC2hazard可用来反映危害的类别。例如,具有高持久性和人体健康效应的污染物位于图2(a)中PCA分布图的右上方,而具有高生物累积性和生态毒性的污染物位于PCA分布图的右下方。

聚类分析中的POP被分为一类,需要聚类数为4,可确保相似性质污染物的适当分组。将污染物按照其聚类类别用不同颜色标记于图2(a)中的PCA分布图中,聚类I位于PCA分布图的最右侧,PC1hazard值较高,其中,POP位于聚类I的末端,具有最强的危害。聚类II和III位于PC1hazard的中间位置,但是,聚类II主要由PC2hazard为正值的物质组成,聚类III主要由PC2hazard为负值的物质组成。这表明,聚类II中的污染物具有更高持久性和人体健康效应,聚类III中的污染物具有更高的生物累积性和生态毒性。聚类IV位于PC1hazard的最左侧,危害效应最低。各个类别的污染物在4种聚类中所占百分比如图2(b)中所示。PFAS以高比例物质分布于聚类I中,具有较高的危害效应。相反,甜味剂完全分布于聚类IV中,这类物质毒性较弱,常用作污水指示物来追踪毒性物质的来源。尽管PPCP相对甜味剂在4种聚类中分布更广泛,但仍有高比例物质分布在聚类IV,表明PPCP总体毒性较低,但部分PPCP仍需给予关注。农药、酚类化合物和增塑剂这三类物质主要分布在聚类III,需关注其生物累积性和生态毒性。激素在聚类II中的分布较多,需关注其持久性和人体健康效应。

为了确定合适的危害指数筛选阈值,以US EPA CCL4、EU WFD和EU WFD候选列表中列出的EOC作为参考物质,77%的参考物质分布在聚类I和III类中,并主要分布在图2(a)三角形区域中。为使当前监管关注的污染物通过危害筛选,将危害指数阈值设为-0.33,可确保86%以上的参考物质通过危害筛选。共有234种污染物通过筛选作进一步评估。

《3.2 暴露评估》

3.2 暴露评估

405种EOC的中值浓度范围为ND至3270 ng·L-1,其中48种污染物的中值浓度高于100 ng·L-1。甜味剂包括广泛使用的化合物,如安赛蜜和三氯蔗糖等,具有最高的中值浓度(438 ng·L-1),其次是增塑剂(46 ng·L-1)和酚类化合物(29 ng·L-1)。阻燃剂、个人护理品、农药和药物中值浓度在3~10 ng·L-1范围内。激素和PFAS的中值浓度低于1 ng·L-1(见附录A中的图S3)。除激素(9%)外,其他各类污染物的平均检出频率均超过40%(见附录A中的图S4)。

405种EOC暴露参数的PCA分布如图3和附录A中的表S7所示,PC1exposure和PC2exposure分别解释总方差的82%和18%。检出浓度和检出频率均随PC1exposure的增加而增大,展示出暴露效应的预期趋势。PC1exposure增加,污染物综合暴露潜力增大。405种污染物的暴露指数分布在-2.22~1.89之间。理化性质差异大的EOC类别,如药物、农药和个人护理品,暴露指数分散于PC1exposure坐标轴。激素和PFAS主要分布在PC1exposure坐标轴的左侧,暴露指数较低。甜味剂、增塑剂、酚类化合物和阻燃剂主要分布在PC1exposure坐标轴的右侧,暴露指数对较高。总体而言,甜味剂具有较高的暴露指数,中值为1.50,其次为增塑剂(中值为0.64)和酚类化合物(0.62),其他类别的污染物的暴露指数中值排序如下:阻燃剂(0.46)>个人护理品(0.38)>药品(0.24)>农药(- 0.16)>PFAS(- 0.75)>激素(-1.59)。通过多元线性回归探究暴露指数和原来变量数据之间的线性关系,线性关系如公式(5)所示,该线性关系可以准确定量暴露指数,R2高于0.999。

(5)

《图3》

图3 两种暴露参数检出浓度和检出频率的PCA分布图。PC1exposure为暴露指数。为了便于筛选具有高暴露潜力的污染物,将检出浓度和频率筛选阈值分别设置为5 ng·L-1和40%。共有94种污染物通过了暴露和危害的筛选作进一步评估(见附录A中的表S7)。

《3.3 风险评估》

3.3 风险评估

对于环境中未检出的物质,若PNEC低于MDL的半值,则不计算其RQ,因用MDL半值来替代其检出浓度,会高估污染物的风险。共有5种污染物具有潜在的人体健康风险,RQhum值大于0.1。17α-乙炔雌二醇具有较高的人体健康风险,RQhum值为43.4;雌三醇、全氟辛酸(PFOA)、17α-雌二醇和雌酮的RQhum值分别为0.8、0.7、0.2和0.1。17α-乙炔雌二醇、雌三醇和雌酮对人体健康和生态系统均构成风险。95种污染物存在潜在的生态风险。17α-乙炔雌二醇、17β-雌二醇、咖啡因、高效氯氟氰菊酯、氯氰菊酯、雌酮、吡虫啉这7种污染物的RQeco大于1000,对水生生物构成严重的风险;联苯菊酯、双酚A、双酚S、乙拌磷、敌草隆、西玛津、四环素这7种污染物的RQeco高于100,对生态系统构成高风险;4-叔辛基苯酚、2-羟基莠去津、苯扎贝特、毒死蜱、雌三醇、乙硫磷、甲氰菊酯、布洛芬、左氧氟沙星和三唑磷这10种污染物的生态风险商大于10;另有71种EOC的RQeco大于0.1,风险评估结果详见附录A中的表S8。有29种物质的RQ值大于0.1,未通过暴露或危害筛选(见附录A中的表S9),将这29种污染物加入了优先排序清单,共对123种EOC进行排名。

《3.4 优先指数》

3.4 优先指数

EOC优先指数得分如附录A中的表S10所示,根据优先指数的分布(图4),将123种污染物分为4个等级:优先等级I(11种最高优先级的物质);优先等级II(36种高优先级物质);优先等级III(59种中等优先级物质);优先等级IV(17种低优先级的物质)。需要注意的是该排名是相对的,优先等级划分的阈值是可变的,在这种情况下,建议将优先等级I和II中的物质优先作为未来的环境监测和管控对象,根据资源可利用情况,酌情关注优先等级III和IV中的物质,将其纳入环境监测指标,研究其在饮用水厂和污水处理厂中的去除技术。

《图4》

图4 EOC的优先指数排名。第I、II和III组优先指数截止值分别为0.54、0.43和0.30。

抗生素(红霉素和罗红霉素)、激素(17α-乙炔雌二醇、17β-雌二醇、雌三醇和雌酮)、除草剂(敌草隆和去草净)、PFAS(PFOA)和个人护理品(三氯生和佳乐麝香)被列为最高优先等级物质(表1)[22,24,2829,33,35,9798]。红霉素因具有高消费量、长持久性和高毒性成为水环境中备受关注的抗生素[99],被列入WFD候选物质名单(2018/840),是US EPA CCL4中唯一的抗生素。罗红霉素是一种常用的大环内酯类抗生素,广泛存在于水环境中,对水生生物具有潜在的危害[100]。4种雌激素(17α-乙炔雌二醇、17β-雌二醇、雌三醇和雌酮)是环境中雌激素活性的主要贡献物[101],被列入Directive 2013/39/EU或US EPA CCL4。敌草隆是一种苯脲类除草剂,常用作防污剂和除草剂,它对非靶标生物具有高毒性,被列为可能的致癌物[102]。去草净是一种三嗪类除草剂,用于防治阔叶杂草、浮游杂草和藻类,具有生物累积性,于2002年被欧盟禁止在农业中使用,并被列为WFD优先物质(2013/39/EU)[103104]。三氯生是一种广泛使用的抗菌剂,因具有生物放大效应、潜在的内分泌干扰效应以及对多种生物的急性和慢性毒性[105],被美国FDA禁止用于肥皂等个人护理产品[106]。此外,三氯生被列为NORMAN类别1中优先物质† [19]。佳乐麝香是一种多环麝香,因其高消费量、亲脂性、生物过程中持久性而日益受到重视[107]。全氟辛酸是一种具有高化学稳定性和热稳定性的工业化学品,因其具有持久性、生物累积性、高毒性和长距离迁移能力,被列入《关于持久性有机污染物的斯德哥尔摩公约》的附件A中[108]。

《表1》

表1 优先等级I中11种最高优先级EOC的检出浓度、检出频率、危害指数、暴露指数、RQ、RQ、优先指数和不确定类别汇总及与已有研究的比较

RankCompoundCAS #Concentration (ng·L-1)Frequency (%)HPEPRQhumRQecoUncertainty categoryPriority IndexRegulatory guidelinesRank in previous studies
1PFOA335-67-1651001.641.130.677.89 × 10-210.67US EPA CCL49/117 [35]
2Estrone53-16-7321001.810.980.112.14 × 10310.66EU WFD watchlist; NOMAN Category 1; US EPA CCL45/100 [28]; 43/117 [35]
317α-Ethinyl estradiol57-63-622672.400.4143.417.34 × 10410.61

US EPA CCL4;

EU WFD watchlist

44/100 [28]; 1/582 [97]; Priority compound /88 [22];
417β-Estradiol50-28-229811.630.682.26×10-22.83 × 10310.58

US EPA CCL4;

EU WFD watchlist

45/117 [35]; 17/100 [28]; 4/582 [98]; Priority compound /88 [22];
5Triclosan3380-34-5501001.031.087.99×10-42.5010.57Noman Category 123/117 [35]; 25/100 [28]; Top 10/200 [97]
6Estriol50-27-127831.490.700.8457.4210.56US EPA CCL4108/117 [35];42/100 [28];
7Roxithromycin80214-83-1261001.130.952.07×10-30.2610.5619/39 [29]; 83/100 [28]; 11/100 [33]
8Erythromycin114-07-81191000.771.255.25×10-30.5910.56

US EPA CCL4;

EU WFD watchlist;

NOMAN Category 2

2/117 [35]; 1/39 [29];22/100 [28]; 19/100 [33];Priority compound/88 [22];
9Terbutryn886-50-0611000.891.122.26×10-33.8020.55EU WFDConcern compound/302 [24];
10Diuron330-54-1151001.120.848.06×10-42.96 × 10220.54

US EPA CCL4;

EU WFD

Top 10/200 [97];
11Galaxolide1222-05-5167960.661.251.19×10-31.1120.54

优先等级II中的36种EOC列于表2中,其中,阿奇霉素、克拉霉素、氯氰菊酯、吡虫啉、异丙隆、苄氯菊酯、西玛津和戊唑醇这8种物质已被列入Directive 2013/39/EU、EU WFD候选列表或US EPA CCL4中。双酚A、卡马西平和双氯芬酸被列为NORMAN类别1中优先污染物;阿奇霉素、克拉霉素和恶草酮被列为NORMAN类别2中优先污染物。其他国家管控的83种物质(如EU WFD、EU WFD候选清单、US EPA CCL4、NORMAN类别1和2)在我国地表水中的优先排序结果如附录A中的表S11所示。共有36种EOC被列为本文的优先名单,其他污染物未通过以下筛选:5种物质未通过暴露筛选、3种物质未通过危害筛选、8种物质已被我国禁止或限用;4种物质已纳入常规监测;16种物质缺乏我国地表水监测数据;11种物质未在我国登记。

《表2》

表2 优先等级II中36种高优先级EOC的检出浓度、检出频率、危害指数、暴露指数、RQ、RQ、优先指数和不确定类别汇总

RankCompoundCAS #

Concentration

(ng·L-1)

Frequency

(%)

HPEPRQhumRQecoPriority indexUncertainty valueUncertainty categoryRegulatory guidelines
12Lambda-cyhalothrin91465-08-612602.110.193.33 × 10-45.92 × 1030.530.082
13Bisphenol A80-05-71631000.551.312.30 × 10-4817.050.5301NOMAN Category 1
14Disulfoton298-04-4385780.711.148.66 × 10-2104.130.530.082
15Cypermethrin52315-07-828571.780.321.84 × 10-41.42 × 1060.520.082EU WFD
16Diazepam439-14-5141000.940.823.97 × 10-32.910.510.001
17Tris(1,3-dichloro-2-propyl) phosphate13674-87-8271000.780.954.55 × 10-50.680.510.082
18Diisodecyl phthalate26761-40-0433640.700.961.65 × 10-40.720.500.082
194-Tert-octylphenol140-66-958980.591.073.26 × 10-529.110.500.001
20Triclocarban101-20-2161000.790.861.12 × 10-50.650.500.001
21Atrazine-2-hydroxy2163-68-05491000.131.551.40 × 10-383.180.500.134
22Triazophos24017-47-812980.840.764.34 × 10-448.400.490.082
23Oxadiazon19666-30-91351.120.528.09 × 10-31.530.480.132NOMAN Category 2
24Profenofos41198-08-79.31000.810.752.45 × 10-50.500.480.082
25Cyfluthrin68359-37-56.7641.620.152.36 × 10-59.590.470.082
26Azithromycin83905-01-525800.860.644.56 × 10-41.310.470.043EU WFD watchlist; NOMAN Category 2
27Climbazole38083-17-9431000.401.057.55 × 10-50.670.470.043
28Carbamazepine298-46-4571000.331.15.11 × 10-31.130.4701NOMAN Category 1
29Imidacloprid138261-41-3541000.331.092.74 × 10-51.80 × 1030.460.082EU WFD watchlist
30Simazine122-34-9194670.560.853.39 × 10-41.62 × 1020.460.082EU WFD
31Metoprolol51384-51-12461000.021.393.05 × 10-24.930.460.001
32Isoproturon34123-59-61331000.111.273.54 × 10-45.300.460.082EU WFD
33Bezafibrate41859-67-039980.331.004.31 × 10-457.240.450.001
34Phosalone2310-17-0281000.370.961.76 × 10-43.35 × 10-20.450.082
35Fluoxetine54910-89-327810.680.673.90 × 10-30.860.450.001
36Quinalphos13593-03-812750.990.422.95 × 10-35.700.450.082
37Tebuconazole107534-96-3331000.310.994.43 × 10-52.72 × 10-20.450.082US EPA CCL4
38Bifenthrin82657-04-313332.11-0.22.74 × 10-4480.770.450.082
39Permethrin52645-53-19.3621.320.183.04 × 10-52.390.440.082US EPA CCL4
40Levofloxacin100986-85-458870.340.911.50 × 10-573.290.440.082
41Salinomycin53003-10-46.61000.580.682.12 × 10-55.82 × 10-30.440.082
42Diclofenac15307-86-5691000.111.141.40 × 10-41.900.4401NOMAN Category 1
43Clarithromycin81103-11-912730.940.391.86 × 10-31.50 × 10-20.4401EU WFD watchlist; NOMAN Category 2
444-Tert-butylphenol98-54-449594-0.141.444.16 × 10-42.470.440.134
45Caffeine58-08-22214100-0.441.824.57 × 10-42.21 × 1030.4301
46Azoxystrobin131860-33-8101000.390.771.88 × 10-60.330.430.082
47Diisononyl phthalate28553-12-0493440.490.671.25 × 10-40.730.430.082

与已有的研究比较,Sui等[29]筛选出我国地表水中最高优先级的三种药物为双氯芬酸(列为本文中优先等级II)、红霉素(优先等级I)和布洛芬(优先等级III);Li等[35]筛选出我国地下水中前三名的有机污染物为红霉素(优先等级I)、布洛芬(优先等级III)和壬基酚(已被国内限制);最近的一项研究建议将双氯芬酸(优先等级II)、红霉素(优先等级I)和青霉素G(优先等级III)作为我国地表水中的高优先级EOC [33]。其他研究建议将17α-乙炔雌二醇(激素)、17β-雌二醇(激素)、敌草隆(除草剂)、红霉素(药物)、雌酮(激素)、PFOA(PFAS)、罗红霉素(药物)、去草净(除草剂)和三氯生(个人护理品)作为优先EOC [22,24,2829,33,35,9798]。佳乐麝香未被列入其他优先名单,但在本文中被确定为优先EOC,应予以特别考虑。

《3.5 优先等级分布特征》

3.5 优先等级分布特征

4种优先等级中各类污染物的数量如图5(a)所示。激素、个人护理品、农药和药物分别占优先等级I中污染物总数量的36%、18%、18%和14%。农药和药物分别占优先等级II中污染物总数量的45%和29%。农药和药物在优先等级I和II中占比高,被视为优先类别。但由于所评估的药物和农药的数量高于其他类别污染物的数量,可能导致它们对优先等级I和II的贡献更大。为了评估这种可能性,计算4种优先等级中各类污染物的数量占该类别污染物总数量的比例,结果如图5(b)所示。15%的激素位于优先等级I中,其次是PFAS,总数量的5%被列入优先等级I,而仅有1%药物被列入优先等级I中。总体而言,激素、农药、PFAS和药物在优先等级I和II占比高,应优先纳入未来监测和控制计划,代表了严重的生态风险和人体健康风险。

《图5》

图5 各类别EOC在4种优先等级中所占的数量(a)和百分比(b)。由于一些物质未参与排名,特定类别污染物的总百分比并不等于100%。

123种EOC在各类别中优先指数排名结果如附录A中的表S12所示。各类别中优先级最高的污染物为:双酚A(酚类化合物)、邻苯二甲酸二异癸酯(增塑剂)、雌酮(激素)、去草净(农药)、罗红霉素(药物)、PFOA(PFAS)、三氯生(个人护理品)和三(1,3-二氯-2-丙基)磷酸酯(阻燃剂)。这些物质可纳入环境监测计划、饮用水或污水处理过程的评估计划及其他环境相关EOC混合物研究。

《3.6 不同排序方法比较》

3.6 不同排序方法比较

研究中比较暴露指数、危害指数、RQhum、RQeco和优先指数5种不同排序方法的排序结果,各方法排名前50的EOC列于表3中,全部结果列于附录A中的表S13。利用皮尔森相关性分析表明5种方法的相关性介于- 0.25(暴露指数与危害指数)至0.72(优先指数与暴露指数)之间。优先指数与暴露指数和危害指数(0.43)排序结果密切相关,表明优先指数同时考虑了EOC的生态风险和人体健康风险。14种EOC在4种排序方法中均位于前50名,分别为:17α-乙炔雌二醇、17β-雌二醇、2-羟基莠去津、避蚊胺、地西泮、乙拌磷、雌三醇、雌酮、美托洛尔、恶草酮、PFOA、喹硫磷、去草净和三氯生。类似地,17种EOC在三种优先排序均位于前50名,分别为:4-叔丁基苯酚、乙酰氨基酚、联苯菊酯、双酚A、卡马西平、咖啡因、克拉霉素、氟氯氰菊酯、氯氰菊酯、双氯芬酸、敌草隆、红霉素、佳乐麝香、异丙隆、高效氯氟氰菊酯、苄氯菊酯和罗红霉素。除对乙酰氨基酚外,其余30种物质均为优先等级I或II中物质,表明优先指数可以综合考虑EOC的暴露潜力和毒性效应。

《表3》

表3 5种不同的排序方法中排名前50的EOC(暴露指数、危害指数、RQ、RQ和优先指数)

No.EPHPRQhumRQecoPriority Index
1Di-iso-butyl phthalate1Perfluorooctadecanoic acid117α-ethinylestradiol4Cypermethrin3Perfluorooctanoate4
2Caffeine3Perfluorohexadecanoic acid1Estriol417α-Ethinyl estradiol4Estrone4
3Acephate217α-Ethinyl estradiol4Perfluorooctanoate4Lambda-cyhalothrin317α-Ethinyl estradiol4
4Acesulfame1Tetrabromobisphenol A117α-Estradiol117β-Estradiol417β-Estradiol4
5

Atrazine-desisopropyl-2-

hydroxy2

Lambda-cyhalothrin3Estrone4Caffeine3Triclosan4
6Sucralose1Bifenthrin3Disulfoton4Estrone4Estriol4
7Triethyl Phosphate1Perfluorononanoic acid2Perfluorononanoic acid2Imidacloprid2Roxithromycin3
8Atrazine-2-hydroxy4Estrone4Dimetridazole1Bisphenol A3Erythromycin3
9Tris (2-chloroisopropyl) phosphate1N-ethyl perfluoroctane Sulfonamide1Diethylstilbestrol2Bifenthrin3Terbutryn4
10Diethyl Phthalate2Perfluorotridecanoate1Metoprolol4Diuron4Diuron4
11Tris(2-chloroethyl) phosphate2Cypermethrin3Famotidine1Tetracycline1Galaxolide3
12Metformin1N-methyl perfluoroctane Sulfonamide1Perfluorohexanesulfonic acid1Bisphenol S2Lambda-cyhalothrin3
13Saccharin1Triclosan417β-Estradiol4Simazine2Bisphenol A3
14Benzophenone1Perfluorooctanoate4Oxadiazon4Disulfoton4Disulfoton4
15Salicylic acid117β-Estradiol4Trithion1Atrazine-2-hydroxy4Cypermethrin3
16Amantadine1Cyfluthrin3Ketoprofen2Levofloxacin2Diazepam4
17Bisphenol S2Flufenoxuron1Erythromycin3Estriol4Tris(1,3-dichloro-2-propyl) phosphate1
18Atrazine-desethyl-2-hydroxy1Estriol45-Methyl-1H-benzotriazole2Bezafibrate2Diisodecyl phthalate1
19Acetylsulfamethoxazole1Chlorpyrifos2Carbamazepine3Ibuprofen14-Tert-octylphenol2
204-tert-butylphenol3Dihydrotestosterone1Diazepam4Triazophos2Triclocarban1
21Metoprolol4Etofenprox1Fluoxetine2Ethion2Atrazine-2-hydroxy4
225-Methyl-1H-benzotriazole2Perfluorooctane sulfonamide1Atrazine-desisopropyl-2-hydroxy24-tert-octylphenol2Triazophos2
23Benzotriazole1Perfluorotetradecanoic acid1Guanylurea2Chlorpyrifos2Oxadiazon4
24Tris(2-butoxyethyl) phosphate1Permethrin3Quinalphos4Fenpropathrin2Profenofos2
25Acetylsulfadiazine1Ethion2Terbutryn4Cyfluthrin3Cyfluthrin3
26Sulpiride1Clomipramine2Roxithromycin3Quinalphos4Azithromycin2
27Bisphenol A317β-Trenbolone1Clomipramine2Isoproturon3Climbazole1
28DEET2Trifluralin1Alprazolam1Indometacin1Carbamazepine3
29Dimethyl phthalate1Diethylstilbestrol2Icaridin1Metoprolol4Imidacloprid2
30Isoproturon3N-ethyl perfluorooctane sulfonamidoacetic acid1Clarithromycin3Di-n-octyl phthalate1Simazine2
31Carbendazim2Tetrachlorobisphenol A1Acephate2Terbutryn4Metoprolol4
32Guanylurea2Narasin1Atrazine-2-hydroxy4Diazepam4Isoproturon3
33Erythromycin3Roxithromycin3N-acetyl-4-amino antipyrine2DEET2Bezafibrate2
34Galaxolide3Perfluoroundecanoate1Sulfisoxazole1Triclosan4Phosalone1
35p-hydroxybenzoic Acid1Diuron4Galaxolide34-tert-butylphenol3Fluoxetine2
36Ketoprofen2Norethindrone1Piromidic acid1Permethrin3Quinalphos4
37Acetaminophen3Oxadiazon4Iopamidol1Profenofos2Tebuconazole1
38Ephedrine1Musk xylene1Trimethyl phosphate1Tris(2-chloroethyl) phosphate2Bifenthrin3
39Tri-n-butyl phosphate1Perfluorodecanoate1Atenolol1Carbendazim2Permethrin3
40Thiamphenicol1Pendimethalin1Amlodipine1Diclofenac3Levofloxacin2
41Diclofenac3Quinalphos4Simvastatin1Atrazine-desethyl2Salinomycin1
42Disulfoton4Perfluorodecane sulfonate1Diuron4Propiconazole1Diclofenac3
43Sparfloxacin1Difenoconazole1Triclosan4Clotrimazole2Clarithromycin3
44Perfluorooctanoate4Fenpropathrin2Lorazepam1Oxadiazon44-tert-butylphenol3
45Sulfamethoxazole1Clotrimazole2Florfenicol2Fenitrothion1Caffeine3
46Florfenicol2Diazepam4Perfluoropentanoic acid1Diethyl phthalate2Azoxystrobin1
47N-acetyl-4-amino antipyrine2Clarithromycin3Tri-iso-butyl phosphate1Penicillin G1Diisononyl Phthalate1
48Terbutryn4Isofenphos1Cefotaxime1Azithromycin22,4-Di-tert-pentylphenol1
49Trimethoprim1Ketoconazole1Paraxanthine1Acetaminophen3Atrazine-desethyl2
50Carbamazepine3Indoxacarb1Sulfachloropyridazine1Mono-(2-ethylhexyl) phthalate1Temazepam1

《3.7 不确定分析》

3.7 不确定分析

候选EOC的不确定分值如附录A中的表S15所示。根据暴露和毒性数据的不确定性来源,将污染物划分为4类:不确定类别1(83种物质,具有充足的浓度和毒性数据);类别2(115种物质,缺乏浓度数据);类别3(51种物质,缺乏生态毒性或人体健康效应数据);以及类别4(156种物质,浓度数据和毒性数据均缺乏),划分阈值如表4所示。针对不确定类别2中的污染物,建议增加环境监测项目;不确定类别3中的物质,建议增加危害评估;不确定类别4中的物质,既需增加环境监测又需增加危害评估。各类污染物在4种不确定类别中所占的数量和百分比如图6所示。药物和激素在4种不确定类别中均匀分布;农药主要分布在不确定类别2中,需增加我国地表水中环境监测研究;PFAS主要分布在不确定类别3中,缺乏毒性数据,需增加毒性评估研究;阻燃剂、个人护理品、酚类化合物、增塑剂和甜味剂主要分布在不确定类别4,需增加其环境监测和危害评估。总体而言,38.5%的EOC被列入不确定类别4,突显了我国地表水中EOC数据的缺乏。各不确定类别污染物按照优先指数排序结果如附录A中的表S16所示。

《表4》

表4 我国地表水中EOC不确定类别划分的阈值

Uncertainty categoryDescriptionNumbers of provinces and sites with analysesEcological and human health effects
1Sufficient monitoring data and hazard assessment using experimental toxicity≥4 provinces and ≥50 sitesBoth effects using experimental data
2Hazard assessment using experimental toxicity but few monitoring data<4 provinces or <50 sitesBoth effects using experimental data
3Sufficient monitoring data but hazard assessment using predicted toxicity≥4 provinces and ≥50 sitesOne or two effects using predicted data
4Few monitoring data and hazard assessment using predicted toxicity<4 provinces or <50 sitesOne or two effects using predicted data

《图6》

图6 各类污染物在4种不确定类别中所占的数量(a)和百分比(b)。

《3.8 优先控制建议》

3.8 优先控制建议

根据4个优先等级类别和4个不确定类别将EOC划分成16个类别,优先等级I~IV中污染物的不确定类别如表5所示,不确定类别1、2、3和4中分别包括47、48、9和19种EOC。建议将优先等级高且不确定类别低(优先等级I/不确定类别1和优先等级II/不确定类别1)中的19种污染物作为优先控制EOC,进行常规监测,制定环境质量控制标准和控制策略。如果资源允许,还需关注优先等级III/不确定类别1和优先等级IV/不确定类别1中的28种污染物。其他不确定类别中的污染物作为常规监测的候选物质,应根据前一节的建议采取不同的行动措施,待暴露数据和毒性数据充分,需重新评估是否纳入优先控制列表。

《表5》

表5 优先等级I~IV中的污染物不确定类别

Uncertainty 1Uncertainty 2Uncertainty 3Uncertainty 4

Priority

I

17β-Estradiola17α-Ethinyl estradiolaDiuron
EstroneaEstriolGalaxolide
TriclosanPerfluorooctanoateTerbutryn
RoxithromycinErythromycin

Priority

II

Bezafibrate4-Tert-octylphenolAzoxystrobinIsoproturonQuinalphosAzithromycinAtrazine-2-hydroxy
Bisphenol ADiazepamBifenthrinaLevofloxacinSalinomycinClimbazole4-Tert-butylphenol
CaffeineDiclofenacCyfluthrinaOxadiazonSimazine
CarbamazepineFluoxetineCypermethrinPermethrinTebuconazole
ClarithromycinMetoprololDisulfotonaPhosaloneDiisodecyl phthalate
TriclocarbanImidaclopridaProfenofosTriazophosa
Diisononyl-phthalateLambda-cyhalothrinTris (1,3-dichloro-2-propyl) phosphate

Priority

III

AcetaminophenFluconazoleOfloxacinAcephateButachlorPropiconazoleBenzophenone-317α-estradiolMusk ketone
CarbendazimGemfibrozilPenicillin GAcetochlorEthionaTerbuthylazineBisphenol S4-hexylphenolOctyl phenol
ChlorpyrifosaIbuprofenSulfadiazineAlachlorFenobucarbThiodicarbDi-iso-butyl phthalate4-octylphenolOxazepam
Clofibric acidIndometacinSulfapyridineBentazoneIsoprocarbTonalide4-butylphenolThionazin
ClotrimazoleKetoprofenTetracyclineTemazepamTris(2-chloroethyl) phosphateDimetridazoleAtrazine-desisopropylAtrazine-desethyl
DiltiazemLincomycinThiamphenicolDiethylstilbestrolOctocrylene2,4-Di-tert-pentylphenolIcaridin
Diethyl phthalateMetolachlorFenpropathrinTetrabromobisphenol APerfluorohexanesulfonic acidEthylhexyl- methoxycinnamateTri-iso-butyl- phosphate
Mefenamic acidDEET

Priority

IV

DoxycyclineTylosinAmpicillinIprobenfosMyclobutanilDi-n-octyl phthalateBenzophenone-4Famphur
NorfloxacinVenlafaxineDiazinonIsofenphosPaclobutrazolMono-(2-ethylhexyl) phthalate
spiramycinfenitrothionmonensin

此外,17种物质(17α-乙炔雌二醇、17β-雌二醇、17β-去甲雄三烯醇酮、阿托伐他汀、联苯菊酯、毒死蜱、氟氯氰菊酯、氯氰菊酯、二氢睾酮、乙拌磷、雌酮、乙硫磷、依芬普司、倍硫磷、吡虫啉、高效氯氟氰菊酯和三唑磷)的PNEC值低于或接近MQL(见附录A中的表S8),现有的分析方法无法满足监测要求,需要提高其灵敏度。此外,在其他国家的水环境中新发现并引起关注的污染物(如代谢物),尚未在我国地表水中进行监测。因此,应定期维护和更新分析方法,以确保获得充足的EOC时空变化数据,尤其是针对优先等级I~III中的污染物。

《4、 结论》

4、 结论

本文提出了一种基于环境危害指数和暴露指数的多标准筛选方法,对我国水环境检出的405种EOC进行优先筛选。通过暴露指数、危害指数和风险商对候选污染物进行初步筛选,并根据优先指数对通过筛选的污染物进行排序。多变量分析方法可以有效地表征污染物的潜在危害,PFAS和激素的危害指数较高,甜味剂和增塑剂的危害指数最低。暴露分析表明甜味剂和增塑剂暴露指数较高,PFAS和激素的暴露指数最低。风险评估结果表明,5种污染物具有潜在人体健康风险,94种污染物具有潜在生态风险,其中,17α-乙炔雌二醇、雌三醇和雌酮三种污染物对生态系统和人体健康均具有潜在风险。根据优先指数排序得到11种最高优先级物质和36种高优先级物质。总体上,激素、农药、PFAS和药物在优先等级I和II中占比高,被视为优先类别。通过对不同优先排序方法的比较,发现优先指数可以较好地整合各单项标准识别出的优先污染物,并证实具有良好的相关性。根据环境浓度数据和毒性数据的可获得性,划分了4个不确定性类别,最终建议将优先等级I/不确定类别1和优先等级II/不确定类别1中的19种EOC列入优先控制名录。针对不确定性类别2、3和4中的EOC,建议分别加强监测活动、危害评估、环境监测和毒性评估。