《1、 引言》

1、 引言

快速城市化和人口增长导致系列社会问题,如温室气体排放、有机废物堆积、能源危机。针对温室气体二氧化碳(CO2)排放,相继出台了多种经济和政治激励措施,以发展CO2捕获和隔离技术[1]。全球以CO2利用为主题的研发(R&D)项目主要集中于化学合成、矿化作用、食品加工、生物固定、能量储存[2]。在这些技术中,以CO2为碳源合成高值化学品受到了极大关注。生物合成途径通常因为产率、收率、滴度低于化学合成途径,而不具备竞争优势[3]。但是,生物路径具有高产物选择性,可在常温常压下操作以降低能耗,从而更好地避免杂质引起催化剂中毒[4]。以CO2替代糖或生物质作为碳源,从细胞工厂合成燃料及化学品,这一技术最近被定义为第三代生物炼制[4]。基于自养微生物电合成途径直接转化CO2(即光-电-产品)的能量效率高于光-生物质-产品途径[4]。针对有机废物堆积,实际上除了CO2,有机废物也能够作为可持续碳源,用于合成生物化学品[5]。受到关注的有机废物处置新技术,已着眼降低环境危害,重视资源回收[67]。针对能源危机,可再生能源的开发利用有助于降低全球人为CO2排放,在全球电力生产中的占比稳步增加[8]。在电力多元化转换(Power-to-X)的技术框架下,能将可再生能源储存于具有高体积能量密度或高质量能量密度,并与现有基础设施兼容的燃料中[9]。

微生物电合成(MES)在狭义上指通过微生物催化剂利用CO2产化学品的电化学技术,广义上也包含基于微生物电化学技术的有机废物生物炼制[1012]。近年来,MES技术及其生物和电子元件的开发引起了学者的广泛兴趣。

MES以CO2为碳源产化学品,可同时实现碳氢化合物合成、CO2生物利用、可再生能源储存[1315]。过去10年,相关研究主要集中在提高产物生成速率和扩大产物谱[16]。例如,通过微生物适应性实验室进化(ALE)、优化电极材料、设计新型高效反应器等可以提高产物生成速率[1718];通过设计基因工程菌株可以产精细化学品[1920];通过整合工艺流程可以产大宗化学品[2123]。

MES以有机废物为碳源产化学品,可获得高产物选择性。MES比传统用于调节氧化还原电位(ORP)的方式的参数控制更精确,且控制范围更广[24]。插入固体电极作为电子受体(EA)或电子供体(ED),能够打破发酵过程的热力学势垒[25]。与直接注入氢气(H2)相比,电极驱动的氧化还原反应避免了通过搅拌增强气液传质带来的能量消耗[26]。当利用MES进行有机废物生物炼制时,可使用具备胞外电子传递(EET)能力的发酵微生物,或使用非电活性发酵微生物与电活性微生物共培养。例如,革兰氏阳性菌Clostridium acetobutylicum能够在无外源电子介体添加时,通过基于黄素的EET进行电发酵,并改变产物谱[27]。使能技术的发展,让MES产精细化学品成为可能[28]。但是,多基因编辑、多模块集成会导致底盘细胞的代谢负荷过载,导致代谢失衡并降低效率[3]。合成微生物组可进行多菌株共培养体系的模块化代谢通路设计,是有效的替代方案[29]。但是,合成微生物组的应用潜力尚未在MES研究中获得证明。混菌体系可直接利用未灭菌的底物,比纯菌体系的基建和运行费用低[30]。因此,使用混菌MES进行实际有机废物生物炼制的意义重大。

中链脂肪酸(MCFA)是具有6~12个碳原子的直链饱和一元羧酸[3132]。MCFA比短链脂肪酸(SCFA, C2~C5)等前体物质的能量密度高,可用作抗菌剂、香料添加剂、动物饲料、生物燃料等。其中,传统生物资源途径产己酸(C6)的得率低,但微生物途径能积累高浓度己酸[33]。在市场价格方面,C1~C5的市场价格整体上随碳链长度的增加而增加[图1(a)]。未精炼的C6价格为1000 USD·t-1,精炼的C6价格达3800 USD·t-1 [8,17,3436]。在全球市场规模方面,不同碳链长度的羧酸差异较大[图1(b)]。据市场预期,到2023年MCAF的全球市场规模将达8 × 109 USD左右[33]。羧酸的疏水性随碳链长度的增加而增加。例如,未解离己酸和戊酸在水中的溶解度依次为10.82 g·L-1和49.7 g·L-1,而其他SCFA则易溶于水[37]。由于强疏水性,C6的提取能耗仅为C2的10% [图1(c)] [17]。

《图1》

图1 (a)羧酸的市场价格;(b)市场预期到2026年的羧酸全球市场规模,数据来源(https://www.marketsandmarkets.com/、https://www.marketwatch.com/、https://dataintelo.com/、http://www.gosreports.com/、https://www.acumenresearchandconsulting.com/);(c)羧酸的提取能耗[17]。图中的点表示不同数据来源,高度表示平均值。市场价格参考文献[8,17,3436]。

以MES为主题的综述文章,分别聚焦EET机制[38]、生物反应器构型[3940]、能量效率提高[41]、能量损耗核算[17]、感光材料开发[42]、三维电极应用[43]。然而,仅有少量综述关注使用MES产特定产物,包括总结MES中产甲烷或乙酸的相关微生物[4445]、讨论MES融合现有生物炼制技术的可能性[9,4647]、阐述MES提升产丁醇性能的潜力[48]。传统发酵产MCFA可望通过微生物电化学手段增效[3132];MES产MCFA的经济效益高于产甲烷或乙酸[4950]。本文将系统讨论MES产MCFA的研究现状与发展趋势,对传统发酵产MCFA的基本原理和研究进展进行归纳。首先,概述结构优化和参数控制以及MES产MCFA的最新成果。其次,讨论MES利用CO2产MCFA的挑战。实际有机废物包含多种ED,电极可作为固态ED促进MES中的生物转换。因此,将多ED策略应用于传统发酵或MES既是机遇也是挑战。最后,展望MES高效合成产物的发展趋势。总之,本文可提供微生物电化学产MCFA的知识基础,有助于启发未来跨学科的相关研究工作。

《2、 传统发酵产MCFA》

2、 传统发酵产MCFA

本节主要介绍传统发酵产MCFA的研究进展。因实际有机废物包含多种ED,本节将重点讨论多ED策略对生物转化的影响。

《2.1 工作原理和研究进展》

2.1 工作原理和研究进展

微生物产MCFA研究进展迅猛,ChainCraft公司(https://www.chaincraft.nl)已开展工业化示范项目。具有MCFA合成功能的微生物包括Clostridium kluyveriC. kluyveri)、Clostridium sp. BS-1(重命名为Caproiciproducens galactitolivorans)、Megasphaera elsdenii、Megasphaera hexanoica等。研究已阐明基于逆β氧化途径(RBO)的微生物碳链延长过程[32,5152]。简要地说,在RBO途径中,氧化各种ED产生的乙酰辅酶A将与作为EA的SCFA循环反应,每个循环使碳链增加两个碳原子[32]。有研究评估了pH值、酵母提取物、无机碳源对模式MCFA合成菌C. kluyveri的影响[53]。构建E. coli工程菌株产C8~C12 MCFA,浓度仅积累至毫克每升,因为这些化学品并非内源物质,而且碳链长度很难控制[54]。构建经过多步操作脂肪酸合酶(FAS)的酵母菌Saccharomyces cerevisiae也能产MCFA [55]。使用偶数、奇数、支链SCFA为底物,可产相对应的偶数、奇数、支链MCFA [33]。实际有机废物能够用作底物产MCFA,如食品加工废水[5657]、酸乳清[37,58]、园林废弃物[59]、活性污泥碱性发酵液[60]、市政污泥厌氧发酵液[61]、中国白酒酿造废水[62]。微生物产MCFA时可形成颗粒污泥[6364]。多种微生物反应器均可用于产MCFA,包括升流式厌氧滤池(UAF)、升流式厌氧污泥床(UASB)、厌氧序批式反应器(ASBR)、连续搅拌釜式反应器(CSTR)、渗滤床反应器(LBR)、膨胀颗粒污泥床(EGSB)[65]。已有关于连续运行反应器超过一年的研究报道,考察了微生物产MCFA的长期稳定性[58,6566]。

《2.2 多ED策略应用于传统发酵》

2.2 多ED策略应用于传统发酵

微生物产MCFA需要ED,可以是乙醇、甲醇、乳酸、H2、CO等[3132]。ED可显著影响产MCFA的成本、微生物群落结构、碳代谢途径。乙醇被认为是微生物产MCFA的理想ED,因为可从工业及农业有机废物等多种来源获得乙醇,且乙醇作为ED产MCFA的性能较高[67]。但是,额外添加乙醇会对环境产生负面影响,且增加成本[68]。使用乙醇作ED时,需要额外添加CO2以供MCFA合成菌(如C. kluyveri)合成蛋白质[69]。使用廉价易得的甲醇作ED时,可产异丁酸和正丁酸[66]。使用乳酸作ED时,将释放CO2,降低碳效率[70]。H2能够用作气态能量载体,但受限于溶解度低。CO的还原电位比H2低,CO可以作为微生物的唯一碳源和能源产MCFA [71]。Clostridium ljungdahliiC. ljungdahlii)能够在H2/CO2条件下产乙酸,在CO/CO2条件下产更具还原性的乙醇[72]。此外,CO能够升级SCFA产MCFA [73]。然而,CO对不同微生物的毒性程度不同,将影响微生物群落结构[74]。

多ED策略应用于传统发酵,主要包括两个方面:一是含多种ED有机废物的生物炼制;二是评估额外添加ED对产MCFA的影响。乙醇和乳酸共同作为ED有望促进产MCFA:乳酸代谢释放的CO2有望补偿乙醇引导碳链延长所需的CO2。中国白酒酿造废水中蕴含乳酸、乙醇、SCFA,用作底物时,血清瓶实验的MCFA选择性(产物MCFA的电子当量除以所消耗底物提供的电子当量)可达80.34% ± 5.26% [62],长期运行EGSB反应器的MCFA收率可达76.80% [65]。碳链延长反应器中,可同时使用甲醇和乙醇,升级SCFA为己酸和异丁酸[75]。在乙醇发酵过程中注入CO,可促使电子更多地流向C3~C7羧酸产物,更少地流向乙酸或甲烷[76]。在乳酸引导碳链延长过程中注入H2,可抑制竞争途径(丙烯酸路径),促进产MCFA [77]。

多ED策略对微生物产MCFA也可起负面作用,主要受微生物群落、底物组分、操作参数的影响。例如,在利用食品加工废水产MCFA的生物反应器中注入H2能提高其性能,而投加乙醇反而降低其性能[57]。同样,在利用酸乳清产MCFA,并在pH值低至5.5条件下运行的生物反应器中投加乙醇也会降低其性能[78]。投加乙醇降低产MCFA性能的实验现象,可解释为乙醇引导碳链延长的功能微生物(如C. kluyveri)并不是这类生物反应器中的关键微生物,而乳酸取代了乙醇成为ED。乙醇引导碳链延长的C. kluyveri最适pH值为6.5~7.6,而乳酸引导碳链延长的Ruminococcaceae CPB6最适pH值为5.5~6 [79]。近期一项研究表明,pH值低于6时可促进乳酸引导碳链延长产MCFA [80]。当使用含乳糖、乳酸、乙酸、乙醇的混合底物时,投加C. kluyveri的生物强化组比热处理厌氧消化污泥对照组的己酸合成性能更低,可能原因是C. kluyveri抑制乳酸代谢相关微生物的活性[81]。

《3、 微生物电合成产MCFA》

3、 微生物电合成产MCFA

MES以MCFA为目标产物,经济效益高于产甲烷或乙酸,可望耦合现有生物炼制技术,推动MES实用化。本节主要讨论MES产MCFA的相关研究。

《3.1 CO为唯一碳源》

3.1 CO为唯一碳源

在MES反应器中,在抑制产甲烷时,以CO2为底物合成的主产物是乙酸[17,38]。多项研究报道MES利用CO2为唯一碳源产MCFA,C6特异性低于4%~20%,开始积累C6的延滞期可长达240 d(表1)[22,49,74,8291]。优化MES反应器结构和运行参数(如pH值、气体分压),对以CO2为唯一碳源产MCFA至关重要。构建基于穿透电极的MES反应器,该反应器可在高电流密度(175 A·m-2)下运行,开始积累C6的延滞期为150 d,最大己酸浓度为1.5 g·L-1,低于丁酸(3.2 g·L-1)和乙酸(8.6 g·L-1)[82]。构建配备双生物阴极的MES反应器,控制传统阴极的pH值为6.9,中间生物阴极的pH值为4.9,最终获得己酸(0.27 g·L-1)、丁酸(1.49 g·L-1)、乙酸(约4.1 g·L-1)[22]。在低pH值和高H2分压下运行MES反应器,积累的丁酸浓度高于乙酸,但仅产少量的己酸[84]。在这些MES反应器中,丁酸能够通过Wood-Ljungdahl途径(WLP)耦合乙酰辅酶A还原路径生成,也可通过基于RBO路径的碳链延长过程生成[9293]。己酸的积累表明,RBO路径在反应器中是激活的[84]。但是,对于两个产丁酸路径的具体贡献尚待定量研究。控制MES反应器的pH值为5左右,经过462 d的运行,己酸的最大浓度为1.2 g·L-1,低于丁酸(3.1 g·L-1)和乙酸(4.9 g·L-1)[49]。调节MES反应器的CO2供应速率,经过200 d的运行,己酸的最大浓度达3.1 g·L-1,仍然低于丁酸(9.3 g·L-1)和乙酸(17.5 g·L-1)[83]。由于MES利用CO2为唯一碳源产MCFA存在挑战,可在MES中使用SCFA替代CO2作为碳源(相关研究将在4.3节讨论)。此外,多ED策略应用于MES可促进合成MCFA。

《表1》

表1 MES产MCFA的相关研究

Carbon sourcesElectron donorsMaximum MCFAs concentration (g·L-1)Maximum C6 specificitya (%)Lag phase of C6 (d)Ref.
CO2ElectrodeC6 (1.5)20164[82]
CO2ElectrodeC6 (3.1)17171[83]
CO2ElectrodeC6 (1.2)16240[49]
CO2ElectrodeC6 (0.27)5< 5[22]
CO2ElectrodeC6 (<0.1)< 4NA[84]
CO2ElectrodeC6 (0.25), C7 (0.26)141[85]
Acetate, K2CO3ElectrodeC6 (0.739), C8 (0.036)NAb4[86]
Acetate, CO2ElectrodeC6 (0.06)660[87]
Acetate, butyrateElectrodeC6 (0.02)0.2NAb[88]
Acetate, butyrateElectrodeC6 (0.3)1043[89]
CO2, ethanolElectrode, ethanolC6 (7.66), C7 (0.48)841[90]
Acetate, ethanolElectrode, ethanolC6 (6.6)36.22[91]
CO2, COElectrode, COC6 (0.78)15.444[74]

《3.2 多ED策略应用于微生物电合成》

3.2 多ED策略应用于微生物电合成

多ED策略已应用于MES中促进合成MCFA [图2(a)]。例如,在MES中同时使用电极和乙醇作为ED [图2(b)],己酸作为主产物的选择性高达80.28% ± 0.52% [90]。其中,己酸浓度最高为(7.66 ± 1.38) g·L-1,超过丁酸[ (1.22 ± 0.73) g·L-1 ]和乙酸[ (1.15 ± 0.77) g·L-1 ]。根据碳平衡,液相产物中的碳有23.43% ± 0.69%来自CO2。在MES中若同时使用电极和CO作为ED促进MCFA合成,理论上较困难,尽管实验中已观察到乙酸、丁酸、丙酸、异丁酸、戊酸的混合物[94]。研究报道,在以CO∶CO2(50∶50)为底物的MES中,己酸选择性可达15.41% ± 1.48% [图2(c)] [74]。相反,以CO2为底物的对照组中未检测出己酸[74]。

《图2》

图2 (a)多ED策略在MES产MCFA中的应用。(b)MES中同时使用电极和乙醇作为ED的己酸选择性,高于仅使用乙醇或电极作为单一ED的对照组[90]。(c)MES中同时使用电极和CO作为ED,50% CO可获得己酸选择性的最高值[74]。(d)不同底物浓度下富集阴极对混菌碳链延长过程的影响[91]。CF:碳毡。SelectivityS+E:根据底物和电极提供的电子计算出的选择性。

多ED策略应用于MES,将影响产乙酸、产有机溶剂、碳链延长等不同阶段[95]。使用CO作为唯一ED,经过水煤气变换反应(WGSR)后,从WLP的甲基支路,或者直接从WLP的羰基支路,可维持产乙酸菌的自养生长[96]。利用CO时的三磷酸腺苷(ATP)产量和生长速率都应高于利用H2时。这是因为,利用CO时仅在生成还原态铁氧化还原蛋白过程中产ATP,而利用H2/CO2时存在还原态铁氧化还原蛋白和NADPH的电子歧化过程[97]。尚未有研究阐明极化电极对产乙酸阶段或产有机溶剂阶段的影响。例如,尚未明确极化电极能否直接还原产乙酸菌的铁氧化还原蛋白,以提高ATP产量[98]。已有研究表明,极化电极可在一定程度上影响碳链延长过程,但尚待更多的实验去探究。作为全局调控因子,Rex在调节C. kluyveri胞内NADH/NAD+比例中发挥着关键作用[99],对能量代谢至关重要[100]。极化电极可将NADH库调至还原态[3]。然而,C. kluyveri阴极条件产己酸[ (100.7 ± 8.2) mmol·L-1 ]与开路条件[ (81.7 ± 12.0) mmol·L-1 ]无显著性差异[101]。使用新鲜极化阴极,强化以乙酸和乙醇为底物的混菌发酵过程,己酸选择性比开路对照组增加28% [91]。然而,富集阴极对产己酸的影响取决于底物浓度[图2(d)] [91]。微生物电化学手段有望将乳酸代谢过程释放的CO2再固定,强化乳酸引导碳链延长。然而,该假设尚待实验验证。

《4、 微生物电合成利用CO产MCFA的挑战》

4、 微生物电合成利用CO产MCFA的挑战

传统发酵利用复杂有机废物产MCFA是自发反应[100],划分为水解、初次发酵、碳链延长三个阶段[图3(a)]。MES利用CO2产MCFA具有挑战性,需经过产乙酸、产有机溶剂、碳链延长三个步骤[图3(b)] [22,49]。本节将系统讨论MES产MCFA面临的挑战。

《图3》

图3 (a)传统发酵利用复杂有机废物产MCFA。(b)MES利用CO2产MCFA。

《4.1 产甲烷抑制》

4.1 产甲烷抑制

在混菌发酵系统中,产甲烷将消耗碳链延长反应的底物或中间产物(如乙酸和H2),降低产MCFA性能[32,102]。产甲烷会消耗H2和CO2,从热力学角度影响碳链延长过程[32,103],原因是产甲烷(ΔG = -130 kJ)比产乙酸(ΔG = -55 kJ)在热力学上更可行。产甲烷菌是严格厌氧的原核生物,包括噬乙酸产甲烷菌(如Methanosaeta)、兼性噬乙酸产甲烷菌(如Methanosarcina)、噬氢产甲烷菌(如MethanobacteriumMethanoculleusMethanobrevibacter)[104]。当前,通过电-H2-CH4途径产甲烷尚无经济竞争优势,其成本估算约为1.2 EUR·kg-1 CH4(假设H2-CH4的转化效率为90%),而天然气的大宗交易价格低于0.25 EUR·kg-1 [105]。

产甲烷抑制有多种方法,包括添加化学抑制剂[106]、电子介体[107]、导电材料(如磁铁矿[108]、粉末活性炭[109])。常用的甲烷抑制剂2-溴乙基磺酸钠会增加成本[73],会因被微生物降解而影响长期作用效果[110111],会抑制支链MCFA合成[106]。调控操作参数是产甲烷抑制的替代策略,如低pH值、低温、低污泥停留时间(SRT)、低CO2和H2分压[81]。值得注意的是,适用于传统发酵的产甲烷抑制方法大多也适用于MES。

《4.2 产乙酸菌ATP限制》

4.2 产乙酸菌ATP限制

产乙酸菌划分的主要依据是能够通过WLP固定CO2,而不是产乙酸与否[112]。产乙酸菌能独立于其他微生物工作——模式产乙酸菌Acetobacterium woodiiA. woodii)能够在同一个细胞内实现发酵产H2,以及利用H2还原CO2,独立于其他细胞推动发酵过程[113]。产乙酸菌能发挥重要的微生物生态功能——WLP更像是电子汇,而不是完整的呼吸链,可耦合不同类型底物发酵,实现氧化还原平衡[112]。

WLP是厌氧条件下微生物固定CO2最节能的路径[114],其ATP消耗最小[4]。然而,由于ATP限制[98],产乙酸菌通常只合成耦合ATP生成反应的产物[115]。此外,任何使乙酰辅酶A流向乙酸之外的代谢支路,均会进一步消耗ATP [98]。例如,消耗100 mol H2可产23.6 mol乙酸,而产丁酸的理论上限为0.2 mol [115]。而且,产1 mol乙酸仅产0.25~0.63 mol ATP,导致总收率及生产速率不高[116]。正因为能量限制,产乙酸菌的代谢过程受到基于代谢水平的热力学调控,而不是受到更加耗能的转录后水平调控[117]。

由于ATP限制,使用产乙酸菌合成MCFA等长碳链化学品具有挑战性。因此,MES的主产物为乙酸。当前,迫切需要突破产乙酸菌ATP限制,以期通过提高细胞生物量来提高体积产率,或通过调节碳代谢来扩大产物谱。对于传统发酵,突破产乙酸菌ATP限制的手段包括额外投加EA促进能量获取,使用混合营养方式提高产率(图4)[116,118120]。

《图4》

图4 突破产乙酸菌ATP限制的策略。(a)额外投加硝酸盐作为EA为C. ljungdahlii合成ATP提供还原力[116]。(OD660:660 nm光密度;YC/A:单位乙酸细胞产率;Pv:单位体积生产速率;生长速率和Pv的单位分别为h-1和mmol·h-1·L-1)。(b)不同发酵模式:异养、混合营养、H2强化混合营养[118]。(c)使用滴加方式限制葡萄糖浓度,以消除碳代谢阻遏效应(CCR)[119]。(d)限制木糖浓度条件下,同时利用木糖和CO产乙酸[120]。

硝酸盐作为EA提供的能量比CO2高[116]。额外投加硝酸盐能够提高C. ljungdahlii的生长速率、生物量密度、ATP/ADP比例[图4(a)] [116]。然而,Moorella thermoaceticaM. thermoacetica)不能在利用硝酸盐呼吸的同时还原CO2A. woodii不能代谢硝酸盐[116]。额外投加硝酸盐的负面作用包括消耗电子、积累氨氮、提升pH值。额外投加硝酸盐可产生随机抑制,导致生长速率和产物生成速率不平行[121]。

自养和异养条件下,WLP均具有活性[96]。许多产乙酸菌能够从H2之外的不同ED获取电子,包括甲酸、CO等C1物质,醇类、SCFA等初次发酵产物,甘氨酸、甜菜碱等含氮的甲基化合物。产乙酸菌的混合营养方式可同时利用有机和无机碳源[图4(b)],将ATP合成与CO2固定解耦联[122]。除了产乙酸菌,蓝藻、微藻等也能进行混合营养[123124]。例如,Chlorella sorokiniana利用SCFA进行混合营养,可提高生物量产率[125]。但是,在已知的CO2固定路径中,只有WLP能够转化1 mol六碳糖获得3 mol乙酸[126]。多种产乙酸菌均可进行混合营养,包括A. woodiiC. ljungdahliiClostridium autoethanogenumC. autoethanogenum)、Eubacterium limosumE. limosum)、M. thermoacetica [118]。产乙酸菌的混合营养方式,通过替代途径增强能量获取,促进利用CO2合成化学品[127];通过WLP将有机物代谢过程释放的CO2再固定,提高收率。微生物发酵时,丙酮酸脱羧生成乙酰辅酶A的过程会释放CO2,导致糖类底物的碳损失至少33%。合成更具还原性的产物时,将进一步降低碳收率[128]。例如,产乙醇的理论收率为51% [118]。

有机物类型可影响产乙酸菌的混合营养方式。例如,果糖是唯一能被17种产乙酸菌用以混合营养的碳水化合物[122]。使用葡萄糖难以完成碳的完全固定,尽管由葡萄糖代谢产生的还原当量约等于固定CO2所需的还原当量,但部分还原当量将用于微生物生长和活性维持[122]。当合成更具还原性的产物(如丁醇)时,还原当量将更多地流向产物合成,相应地减少流向CO2固定。有研究提出H2强化混合营养的策略,以降低发酵过程的CO2排放,合成更具还原性的产物[118]。

实施产乙酸菌混合营养,糖酵解生产的CO2和WLP固定的CO2要平衡,以提高有机物发酵的收率。此外,糖酵解产生的ATP应当满足CO2固定、细胞生长、化学品合成。但是,实施产乙酸菌混合营养的最大挑战是碳代谢阻遏效应(CCR),即微生物更偏向利用易获取能量的有机物,导致WLP相关基因的下调[129]。很多微生物都能同时利用C1气体和碳水化合物[126]。但是,当使用葡萄糖和CO2为混合底物,对M. thermoacetica实施混合营养时,观察到CCR现象[119]。使用滴加方式限制葡萄糖浓度,可消除CCR,促使微生物以CO2作为主要碳源[图4(c)] [119]。同理,在限制木糖浓度的培养条件下,C. autoethanogenum能够同时利用木糖和CO为碳源产乙酸[图4(d)] [120]。在一篇早期的综述[126]中,提出了“产乙酸菌混合营养促进MCFA合成”的研究设想。该设想的依据是有机物的添加可为WLP提供充足的ATP,WLP的产物可作为RBO的底物用以产MCFA。综合上述讨论,本文提出“电极强化混合营养促进MCFA合成”的研究设想,如图5所示。该设想有一定的理论基础,但尚缺实验证据,也面临一定的挑战。例如,微生物电化学反应器中,固态电极作为ED,促进胞外甚至胞内产H2 [130]。但是,使用H2作为ED的传统发酵与使用电极作为ED的MES,WLP相关的碳代谢不尽相同,产物生成速率和产物谱具有差异[131132]。

《图5》

图5 电极强化混合营养促进MCFA合成。SLP:底物水平磷酸化。其中,SLP释放的CO2可被WLP再固定,一部分CO2可用于MCFA合成菌的生长。

《4.3 产有机溶剂阶段为碳链延长提供ED有限》

4.3 产有机溶剂阶段为碳链延长提供ED有限

微生物通过发酵过程的产有机溶剂阶段产醇类[133]。产有机溶剂的典型微生物是Clostridium属,包括Clostridium aceticumC. ljungdahliiC. carboxidivoransC. ragsdaleiC. autoethanogenum [134]。C. ljungdahlii产乙醇的主要途径可能是基于乙醛铁氧还蛋白氧化还原酶(AOR)-乙醛/醇脱氢酶(AdhE)的乙酸还原,而不是基于AdhE的乙酰辅酶A转化[135]。一些产乙酸菌在pH值为5.4~9.8时均生长良好[136]。但是,偏酸性条件(pH值小于5)及羧酸积累对产有机溶剂过程至关重要[133]。例如,低pH值可促进未解离乙酸扩散到细胞内,进而与质子动势(PMF)解偶联;在质子动势解偶联的条件下,微生物为获取能量,产物从乙酸转变为乙醇[137]。长碳链醇类可使用合成气为碳源,经多级反应合成。共培养研究发现,C. ljungdahlii能够合成初级产物乙酸和乙醇,被C. kluyveri利用并合成长碳链羧酸,再被C. ljungdahlii还原并合成长碳链醇类[138]。

在MES中,产有机溶剂阶段的产醇效果有限[38,88];ED缺乏将限制后续碳链延长过程产MCFA [32]。MES可利用CO2为唯一碳源产醇。构建气体扩散阴极,可促进产有机溶剂阶段的进行,但没有观察到MCFA积累[139]。MES也可利用SCFA为碳源,将其还原产醇;低pH值条件及适宜的SCFA负荷是关键[140]。在双室微生物电化学反应器中以6 g·L-1乙酸为底物,经碳链延长反应获得的最高产物浓度为:己酸0.74 g·L-1、丁酸0.26 g·L-1、辛酸0.04 g·L-1、乙醇0.03 g·L-1 [86]。在以乙酸和CO2为底物的双室微生物电化学反应器中,有丁酸积累,没有检测到醇类,仅产微量的丙酸和己酸[87]。使用单室MES反应器还原乙酸和丁酸,主产物为乙醇、甲醇、丙醇,有少量丁醇,乙酸还原效率为50%,丁酸还原效率仅为18%~40% [141]。因此,当底物负荷为8.0 g COD·L-1 [每升化学需要量(COD)的克数]时,醇类总浓度只有(1.15 ± 0.07) g COD·L-1 [141]。MES经产有机溶剂阶段产MCFA的总体性能,受电子介体[142]、SCFA类型、微生物适应过程等影响[89]。总之,MES产有机溶剂阶段获得的ED有限,导致产MCFA效果不佳。当然,醇的原位产生及快速消耗会导致测到的浓度偏低。已知,高乙醇/乙酸比例(如4∶1),有利于碳链延长,获得高己酸选择性[143]。

《5、 电化学技术促进合成MCFA》

5、 电化学技术促进合成MCFA

在以产MCFA为目标的MES研究中,大多使用化学成分已知的人工培养基。利用实际有机废物和合成气产MCFA是一个复杂过程,而电化学技术可在不同阶段促进MCFA合成。

碳-能源-辅因子比例的调节,对使用反应器微生物菌群进行实际有机废物的生物炼制至关重要。单一底物的使用在化学计量学上限制了碳、能源、辅因子的生物可获得性[119],造成碳-能源-辅因子比例失调。例如,使用葡萄糖作为唯一碳源,会导致生物合成不平衡以及收率降低[144]。葡萄糖能够直接产NADPH,但总体上属于能量缺乏型底物。乙酸能够产乙酰辅酶A和ATP,但不能产NADPH [119]。碳-能源-辅因子比例的调节,有助于减轻酶负担,因为不同底物可从不同位点进入代谢网络[119]。例如,微量的葡萄糖可调和木糖培养基,提升S. cerevisiae发酵性能[145]。羧酸和醇是产MCFA的EA和ED,可经有机废物的预处理及初次发酵过程获得。但是,实际有机废物可能由于EA/ED失衡,而限制MCFA合成。例如,甘蔗废水发酵液的EA不足[146],而污泥发酵液中ED缺乏[147]。在MES反应器中,能量供应可由极化电极调控;碳和辅因子可由底物复配调节。例如,共发酵和共厌氧消化技术可实现营养均衡、抑制物稀释、固体废物减量,促进产H2和产CH4 [148149]。

合成气可来自热解气化、工业排放、电化学CO2还原等途径,可作为合成气发酵的底物产羧酸和醇类。生物转化合成气可增加CO2利用的潜力,虽然其规模与全球CO2排放量相比仍很小[2]。生物质热解气化制取合成气,再进行生物转化,几乎可实现生物质的完全利用,包括对微生物直接降解抗性极高的木质素部分(占纤维素生物质的10%~35%)[96]。利用合成气产MCFA及其衍生物的微生物种类有限。例如,C. carboxidivoransE. limosum能利用合成气产己酸[150],C. carboxidivorans 能利用合成气产己醇[151]。CO的生物转化过程会释放CO2,需要外加ED实现CO2再固定[152]。注入H2,可减少C. autoethanogenum气体发酵过程释放的CO2,引导碳代谢更多地流向乙醇[153]。但是,过量CO会抑制氢化酶活性及H2利用[117]。合成气与葡萄糖耦合发酵可获得更高的转化效率[154]。极化电极可作为合成气发酵的额外ED,促进产乙酸及生物量生长,但尚未阐明其内在机制[155]。

电化学技术能够强化有机废物生物炼制的不同工艺阶段,促进产MCFA,如图6所示。例如,电化学技术可用于预处理、主流工艺、侧流工艺,从有机废物生物炼制中回收氨和硫[9,156]。氨和硫的回收能够增加经济效益,降低微生物毒性,减少碳源及电子浪费,促进产MCFA [32]。电解萃取方法可分离带负电的羧酸,电化学析氢可望结合气提法分离醇类。单独使用MES,以CO2为唯一碳源,可获得比例可调的乙醇和乙酸的混合物。微生物电化学还原羧酸过程,可为合成MCFA提供ED/EA比例适宜的底物。针对原位强化,电化学技术可通过电刺激、参数调控、微生物协同作用等方式增强初次发酵、合成气发酵、碳链延长过程的微生物活性[157]。例如,铁屑、活性炭、生物炭等,可通过降低ORP、缩短延滞期、改变微生物群落结构、作为电子介体等方式,提高电子传递效率,增强MCFA的生成速率和选择性[158159]。

《图6》

图6 电化学技术强化有机废物生物炼制的不同工艺阶段,促进生物转化产MCFA。

《6、 研究不足及展望》

6、 研究不足及展望

产高值MCFA能够进一步促进MES技术的发展。耦合MES与传统生物炼制工艺有望提高其整体性能。本节主要阐述本领域的研究不足及未来展望。

《6.1 多级反应》

6.1 多级反应

产MCFA可通过多级反应实现。多级反应工艺的设计取决于有机废物类型,因为有机废物本身含有或者能够原位产生不同比例的EA和ED。产MCFA过程涉及的微生物及其生长条件不同,功能分区可通过使用生物膜载体或串接反应器实现。提供EA和(或)ED的MES阴极电解液性质,可影响碳链延长过程产MCFA。例如,电活性微生物分泌的电子介体可能被MCFA合成菌摄入,影响碳代谢及能量代谢。

为产MCFA过程提供EA和(或)ED的中间产物,其产生速率和消耗速率应该平衡。多级反应中应当注意调控中间产物的浓度和类型。例如,积累高浓度乙酸(> 10 g·L-1),有望将MES作为独立技术应用于食品工业领域[17]。但是,多级反应中,高浓度乙酸具有生物毒性[154]。许多微生物并不具备直接电子传递(DET)的功能,而基于DET的生物转化过程受制于低电流密度[160]。H2作为电子载体,受限于低溶解度及安全性。在提高储能潜力[161]、平衡氧化还原过程和电解萃取过程等方面[162],甲酸是比乙酸更适宜的电子载体[163]。然而甲酸仅涉及两个电子的转移,作为电子载体参与多级反应,存在被固定CO2再释放的问题[14]。

《6.2 底物供应和产物分离》

6.2 底物供应和产物分离

设计MES反应器,底物供应和产物分离十分重要。使用曝气技术供应低溶解度气态底物,能够加强传质,但会导致蒸汽压较低的醇类从反应器中析出,从而抑制MCFA合成。产物分离对产MCFA过程十分重要,因为产物毒性随着碳链的延长而增加。低pH值以及乙醇的存在,将进一步加剧MCFA的毒性[55]。因此,通过设计新型反应器,增强毒性条件下的稳定性十分重要[147]。此外,底物供应和产物分离模块需要设计得更加紧凑,以期提高MCFA分离选择性,实现相分离[164165]。

《6.3 电化学调控微生物及其代谢路径》

6.3 电化学调控微生物及其代谢路径

MES产MCFA过程涉及微生物和代谢路径,可通过物质和电子交换加以调控。电化学手段可影响反应器的传质过程,进而影响整个生物转化过程。从主体溶液到电极表面,可形成底物和产物的浓度梯度。电场的施加可影响带电离子的传质,如离子态的SCFA和MCFA。插入极化电极驱动EET过程,可能降低特定微生物的生长性能,包括C. autoethanogenum [166]、C. pasteurianum [167]。此外,插入极化电极会干预微生物基因表达。以H2和电极为ED的阴极生物膜,基因表达呈现显著差异[168]。微生物种群在不同区域会出现差异——附着在电极上的微生物会不同于悬浮液中的微生物[156]。例如,电极生物膜中可滞留代时较长的微生物。此外,插入导电电极能够促进微生物间的电子交换,如种间电子传递(IET),引发共生或非共生等相互作用[169]。因此,有必要探究MES产MCFA反应器在动态和复杂条件下的代谢路径。结合科学原理及工程技术,可使用微生物组工程调控生态功能[170]。组学技术可阐明关键基因及其表达规律,应与显微技术及同位素标记技术联合使用,相互印证[168]。

《7、 结论》

7、 结论

传统发酵以及MES产MCFA均已受到学者关注。但是,MES以CO2为唯一碳源产MCFA面临产甲烷抑制、产乙酸菌ATP限制、产有机溶剂阶段提供ED有限等挑战。多ED策略应用于传统发酵以及MES产MCFA均存在机遇与挑战。电化学技术能够强化有机废物生物炼制的不同工艺阶段,促进产MCFA。未来研究需重点关注多级反应、底物供给、产物提取、电化学调控对微生物及其代谢路径的影响。