《1、 引言》

1、 引言

器官移植是治疗终末期器官衰竭患者的一种有效手段。自古以来,人类就有这样的想法:如果身体中的某个器官因疾病而受损,是否可以像机器中损坏的部件一样进行更换[12]?1954年,Joseph Murray在同卵双胞胎之间进行了第一次人类肾脏移植[3]。1958年,Moore等[4]在狗身上进行第一次原位肝移植,而Starzl等[5]则在1963年进行了第一次人体肝移植。同年,D. Hardy在密西西比州杰克逊进行了第一次肺移植手术[6]。1967年,Christiaan Barnard在南非开普敦的Groote Schuur医院进行了世界上第一例心脏移植手术[7]。尽管在此期间克服了技术上的壁垒,但由器官移植排斥反应导致的患者死亡率仍然居高不下。直到20世纪70年代后期,环孢素(一种抑制身体对外来移植物攻击的药物)的出现,器官移植才成为终末期器官衰竭患者的常规治疗方法。然而,免疫系统对移植物的耐受性或排斥性决定了移植物的存活率和患者预后。

器官移植排斥反应是对外来组织的免疫反应,涉及多种固有免疫和适应性免疫细胞。随着免疫抑制剂的不断发展,移植物的短期存活率明显提高,移植物成活一年的概率已经大于80%。然而,这种免疫抑制策略并不能促进移植物的长期(10年)存活[89],移植器官的一般寿命不超过15年。研究表明单侧肺移植的寿命约为6年[10]。因此,更好地理解决定器官移植免疫耐受或排斥的机制对于制定更好的免疫抑制策略和改善患者预后至关重要。

本文概述了免疫细胞在诱导器官移植免疫排斥和免疫耐受中的作用,包括目前针对移植患者处于临床试验阶段的新型细胞治疗(表1、表2、图1)。

《表1》

表1 免疫细胞在器官移植免疫应答中的作用及机制

CellMechanisms involved in transplant rejectionMechanisms included in graft tolerance

Monocytes/

macrophages

Produce proinflammatory factors and ROS, RNS; swallow and kill the graft cells; enhance adaptive immune response; MHC receptor-mediated rejection; promote fibrosisSuppress or swallow the alloreactive T cells; regulate the alloreactive T cells by IDO or iNOS; promote Treg cell differentiation and inhibit DCs maturation; promote angiogenesis and wound healing
NKsKill the graft cells directly; attract or regulate other immune cells and promote alloreactive T cell proliferation and functionInhibit the alloreactive T cells directly; kill or inhibit the function of DCs and indirectly suppress the alloreactive T cells; expand Treg cells
DCsPresent antigen and activate alloreactive T cellsTolDCs inhibit alloreactive T cells; Induce T cell apoptosis by Fas/FasL and IDO; express immunomodulatory molecules and immunosuppressive factors; promote regulator lymphocyte differentiation
NeutrophilsProduce ROS and inflammatory factors; release tissue digestive enzymes; NETosis; enhance T cell immune response; associated with antibody-mediated rejectionInhibit T cell proliferation; promote angiogenesis and wound healing
MCsDegranulation; produce inflammatory factors and recruit other immune cells; promote fibrosisAdjust the Treg function; inhibit T cell proliferation; present antigen and induce production of Th2
EosinophilsRelease inflammatory factors and cationic proteinsDown-regulate T cell-mediated immune response; inhibit CD8+ T cell proliferation
MDSCsNoneDirectly inhibit immunogenic myeloid cells; secrete cytokines and growth factors that convert immunogenic into tolerogenic myeloid cells
TregsNoneInterfere with metabolism; release inhibitory cytokine; improve cytolysis; regulate other immune cells through extracellular mechanisms; induce “immunosuppression” neutrophils
NKT cellsProduce inflammatory cytokinesProduce anti-inflammatory cytokines; augment the proliferation of Treg cell; decrease inflammatory factors
γδ T cellsProduce inflammatory cytokines; ADCCSecrete inhibitory cytokine; inhibit proinflammatory cytokines; induce production of Th2;
Regulatory B cellsNoneSecrete inhibitory cytokine; inhibit T cell proliferation; promote Tregs cell differentiation; induce immunological unresponsiveness to specific alloantigens

《表2》

表2 实体器官移植中调节性细胞治疗的临床试验(来源于ClinicalTrials.gov)

Therapeutic agentType of graftQuantityStudy Phase
TregsLiver10I‒II
Kidney17I‒II
Intestinal1Unknown
BregsNo reportNo reportNo report
MonocytesKidney2I
TolDCsKidney1I‒II
MDSCsNo reportNo reportNo report

《图1》

图1 器官移植免疫应答中免疫细胞间相互作用示意图。与移植物免疫耐受有关的主要机制用蓝色标记,而与移植物免疫排斥有关的主要机制用红色标记。IFN-γ:干扰素-γ;IL:白细胞介素;TGF:转化生长因子;HLA-G:人白细胞抗原-G;VCAM:血管细胞黏附分子;ICAM:细胞间黏附分子;TCR:T细胞受体;DC-SIGN:树突状细胞特异性细胞间黏附分子结合非整合素;APC:抗原提呈细胞;TNF:肿瘤坏死因子;α-SMA:α-平滑肌肌动蛋白;ATP:三磷酸腺苷;FGL2:纤维蛋白原样蛋白2;Arg1:精氨酸酶1;CTLA4:细胞毒性T淋巴细胞相关抗原4;MC:肥大细胞;GM-CSF:粒细胞-巨噬细胞集落刺激因子;IgG:免疫球蛋白G;MMP9:金属蛋白酶9;Mac-1:巨噬细胞抗原复合物-1;CXCR4:C-X-C趋化因子受体4;LAG3:淋巴细胞活化因子3;ICOS:诱导型共刺激分子;ICOSL:ICOS配体;ILCs2:2型固有淋巴细胞;Mregs:调节性巨噬细胞;Fas:自杀相关因子;FasL:Fas配体;NO:一氧化氮;PD-L1:程序性死亡配体-1;PD-L2:程序性死亡配体-2;HO:血红素加氧酶;CD:分化簇;Th1:1型辅助性T细胞;M1:1型巨噬细胞;M2:2型巨噬细胞;OX40:肿瘤坏死因子受体超家族成员4;OX40L:OX40配体;FGF:成纤维细胞生长因子; FcγR:可结晶片段γ受体;NE:中性粒细胞弹性蛋白酶。

《2、 固有免疫细胞》

2、 固有免疫细胞

《2.1 单核/巨噬细胞》

2.1 单核/巨噬细胞

巨噬细胞由组织驻留的巨噬细胞和从血管中募集的单核细胞衍生的巨噬细胞组成,在固有免疫应答中发挥重要作用。巨噬细胞可随组织微环境的不同而改变自身的表型和功能,既能攻击同种异体移植物,也能通过各种机制抑制免疫应答,延长移植物存活[11]。研究表明,由干扰素-γ(IFN-γ)、脂多糖(LPS)、肿瘤坏死因子-α(TNF-α)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)激活的巨噬细胞可分化为1型巨噬细胞(M1),而由白介素-4(IL-4)和IL-13刺激的巨噬细胞则可分化为2型巨噬细胞(M2)[12]。尽管随着研究的深入,体内组织特异性巨噬细胞的多样性和复杂性不断被揭示,但目前仍没有形成可被广泛接受的分类标准。

经典的促炎性M1能够分泌高水平的促炎细胞因子,如IL-1、IL-6、TNF-α、IL-23、高表达诱导型一氧化氮合酶(iNOS),参与对细菌、真菌或病毒感染的免疫应答。尽管M1有助于抗感染,但对它们的持续激活,将导致组织损伤。相反,M2则高表达血小板衍生生长因子(PDGF)、胰岛素样生长因子-1(IGF-1)、血管内皮生长因子-α(VEGF-α)、抗炎细胞因子和趋化因子,具有抗炎功能并且能够促进伤口愈合、血管生成,具有吞噬作用,促进纤维化和炎症的消退。

越来越多的研究表明巨噬细胞在器官移植急性排斥反应中起关键作用。在一项活检样本的研究中,全基因转录组分析结果表明,促炎性巨噬细胞相关3基因在移植物急性排斥期间上调,并且与亚临床移植物损伤的程度呈正相关[13]。在器官移植缺血再灌注的早期阶段,移植受者体内的巨噬细胞迅速浸润移植物,产生大量促炎细胞因子(如IL-1、IL-12、IL-18、IL-6、IL-23、TNF-α和IFN-γ),损害移植物[14]。另外,巨噬细胞还可以通过产生活性氧(ROS)和活性氮(RNS)[1516]促进移植物急性排斥反应。RNS和ROS相互作用,可以促进细胞毒性过氧亚硝酸盐的产生,引起细胞膜脂质过氧化。此外,巨噬细胞还能通过激活适应性免疫应答来介导急性移植排斥反应。作为抗原提呈细胞(APC),无论是供者来源还是受者来源的巨噬细胞均能够提呈抗原,并通过细胞表面的共刺激信号活化T细胞,使其释放促炎细胞因子,导致急性排斥反应。

同样,巨噬细胞与器官移植慢性排斥也息息相关。同种异体移植物慢性排斥的特征在于巨噬细胞和T细胞的间质浸润,并且巨噬细胞浸润增加与移植物失功呈正相关[1718]。M2可通过促进平滑肌细胞增殖和间质纤维化而促进移植物慢性排斥。受者移植物活检表明,发生慢性排斥的移植物中M2占主导,并且其数量与纤维化程度呈正相关[19]。相反,用氧化三磷酸腺苷(ATP,其受体P2x7r优先在M2中表达)抑制移植物中浸润的M2,会减少移植物血管病变,减少纤维化并延长心脏移植物的存活时间[20]。另外,巨噬细胞还能通过向肌成纤维细胞转化来促进同种异体移植物间质纤维化,其特征在于巨噬细胞(CD68)和肌成纤维细胞[α-平滑肌肌动蛋白(α-SMA)]标记物的共表达。

虽然巨噬细胞通过各种机制促进器官移植排斥的发生,但最近的研究表明,过继性调节性巨噬细胞(Mregs)治疗能够诱导移植器官的免疫耐受。Mregs是一群具有独特表型的巨噬细胞亚群,可由巨噬细胞集落刺激因子(M-CSF)和IFN-γ诱导,并且能够抑制同种异体T细胞的增殖和功能。Mregs通过岩藻糖基化配体介导的树突状细胞特异性细胞间黏附分子结合非整合素(DC-SIGN)和Toll样受体4(TLR4)来促进IL-10的表达,进而抑制CD8+ T细胞免疫应答和促进CD4+叉头样蛋白P3(Foxp3)+调节性T细胞(Tregs)扩增[21]。研究表明,小鼠Mregs能在体外通过iNOS抑制T细胞活性,并通过吞噬作用消除同种异体反应性T细胞[22]。人Mregs特异性表达DHRS9,通过IFN-γ诱导的吲哚胺2,3-双加氧酶(IDO)的活化和接触依赖性机制抑制T细胞增殖[2324]。此外,人Mregs可以诱导T细胞免疫球蛋白和ITIM结构域蛋白(TIGIT)+Foxp3+ iTregs分化,并抑制树突状细胞(DC)成熟,促进同种异体器官移植免疫耐受的形成[25]。

《2.2 自然杀伤细胞》

2.2 自然杀伤细胞

自然杀伤(NK)细胞是固有免疫细胞的重要组成部分,约占外周淋巴细胞的10%~15%,在肿瘤免疫监视、病毒防御以及同种异体移植物免疫应答中起重要作用[2627]。人NK细胞通常被定义为CD3-CD56+CD335(NKp46)+淋巴细胞,并可根据CD56的表达水平进一步将其分为低表达(CD56dim)和高表达(CD56bright)两个亚群[28]。

CD56dim NK主要存在于外周血中,表达高水平的CD16(FcγRIII)和终末分化标记物CD57,能够释放穿孔素、颗粒酶,直接杀伤靶细胞。而CD56bright NK则主要在次级淋巴器官中富集,表达低水平的CD16,可通过分泌促炎细胞因子(如IFN-γ和TNF-α)介导免疫应答,亦可通过膜TNF家族分子[如自杀相关因子配体(FasL)、TNF相关凋亡诱导配体(TRAIL)和跨膜 TNF(mTNF)]与靶细胞膜配体结合诱导靶细胞凋亡[2930]。

早期研究表明,NK并未参与实体器官移植排斥反应,因为严重联合免疫缺陷(SCID)或重组激活蛋白(Rag)-/-小鼠(缺乏T细胞和B细胞,NK功能正常)对同种异体移植物具有耐受性[31]。然而,随着研究的不断深入,人们越来越意识到NK也参与了实体器官的移植排斥反应[32]。活化性和抑制性信号的平衡决定了NK的功能。器官移植后的早期阶段,同种异体移植物中便有大量NK浸润[33],并且NK可以被同种异体移植物抗原或被由DC和T细胞分泌的细胞因子(如IL-12、IL-2、IFN-γ)活化[34]。活化的NK可以直接或者通过释放细胞因子杀伤同种异体移植物靶细胞。研究表明,当NK被IL-15激活时,Rag-/-小鼠的皮肤同种异体移植物发生排斥反应[35]。在一项人肾脏移植物活检组织基因表达谱鉴定的研究中,人们发现了高水平的NK转录物,表明NK在这种肾脏移植排斥反应过程中具有独特作用[3637]。同种异体肾脏移植排斥反应在病理学上可分为两类:T细胞介导的排斥反应(TCMR)和抗体介导的排斥反应(AMR)[38]。促炎细胞因子(如IFN-γ、TNF-α)的分泌是由NK介导的TCMR引起的。这些细胞因子能够:

(1)上调 NK分泌的趋化因子[如趋化因子(C-X-C基序)配体9(CXCL9)]来募集同种异体反应性T细胞并促进1型辅助性T细胞(Th1)应答[3941];

(2)上调DC的主要组织相容性复合物-II(MHC-II)和共刺激分子表达,促进DC成熟[42];

(3)促进Th1细胞分化,增强排斥反应[43];

(4)上调供者组织移植物上的同种异体抗原[人类白细胞抗原(HLA)],使其更易受到NK细胞毒作用[44]。

最近的转录组学证据表明,AMR中的NK的活化是通过免疫球蛋白G可结晶片段(IgG Fc)受体CD16触发的。与同种异体移植物内皮细胞结合的供者特异性抗体(DSA)将与NK上的CD16结合,以诱导NK针对同种异体移植物的抗体依赖细胞介导的细胞毒作用(ADCC)[45]。

同样,NK在诱导同种异体移植物免疫耐受方面存在积极作用,其主要机制可能是通过抑制同种反应性T细胞和APC功能实现的。在小鼠移植物抗宿主病(GVHD)模型中,NK能特异性抑制供者同种异体反应性T细胞,促进免疫耐受[46]。另外,NK也能通过释放穿孔素、颗粒酶或其他机制直接杀死供者来源的DC,从而抑制免疫应答并促进致耐受性环境的形成[47]。在小鼠皮肤移植模型中,受者NK杀死供者APC,从而抑制同种异体反应性T细胞增殖,促进对同种异体皮肤移植物的耐受性[48]。此外,在体外细胞培养实验中已证实存在免疫调节性NK细胞(NKreg),能够抑制抗原特异性T细胞[49]。Trojan等[50]研究表明,生存超过1.5年的肾脏移植受者体内可能存在NKreg,其分泌IFN-γ和ADCC的作用减弱,类似于子宫中对妊娠起保护作用的NKreg [51]。Yu等[52]研究表明,同种异体反应性NK可以通过扩增受者来源的CD4+CD25+ Tregs来促进半相合的造血干细胞移植。

《2.3 树突状细胞》

2.3 树突状细胞

DC是体内功能最强的专职性APC,可以通过激活T细胞和B细胞来启动免疫应答,充当固有免疫和适应性免疫之间的桥梁。DC起源于骨髓中的多能造血干细胞,具有复杂的异质性。人DC通常可分为经典DC(conventional DC, cDC),包括髓样DC(myeloid DC, mDC)、淋巴样DC(lymphoid DC)以及能够分泌大量Ⅰ型干扰素的浆细胞样DC(plasmacytoid DC, pDC)[53]。在功能上通常可分为“成熟”状态DC(mature DC)和“未成熟”状态DC(immature DC, imDC)。

器官移植后,移植物中供者DC迁移至受者次级淋巴器官,并诱导同种异体反应性幼稚T细胞分化成效应T细胞,进而迁移到移植物中介导排斥反应。目前认为受者T细胞主要通过直接、间接和半直接识别三种模式识别同种异体反应性抗原。直接识别是指受者T细胞直接识别供者DC表面同种异体MHC分子,通常在移植早期引发急性排斥反应;半直接识别是指受者T细胞既可间接识别受者DC表面MHC分子提呈的供者MHC分子抗原肽复合物,又可以直接识别被转移到受者DC表面的供者抗原肽-供者MHC分子复合物[5455];间接识别是指受者T细胞识别经自身DC加工提呈的供者MHC抗原肽,其在晚期和慢性排斥反应中更为重要。

研究表明DC也可以促进对同种异体抗原的耐受,并且免疫耐受通常是由“未成熟”状态的致耐受性DC(tolerogenic DC, TolDC)介导的[56]。TolDC可能通过以下机制促进同种异体移植物免疫耐受的形成:

(1)表达低水平的MHC II类分子和共刺激分子,诱导T细胞无反应性和克隆缺失;

(2)通过Fas/FasL途径和表达IDO诱导幼稚和记忆性T细胞凋亡;

(3)通过扩增或诱导调节性淋巴细胞[如CD4+CD25hi Foxp3+ Tregs、LAG-3+-CD49b+CD25+Foxp3+/- Tregs(Tr-1)、CD8+ Tregs、调节性B细胞(Bregs)和TCR αβ+CD3+CD4-CD8-NKRP1-双阴性T细胞(DNT细胞)]诱导免疫耐受;

(4)通过表达免疫调节分子[如程序性死亡配体-1(PD-L1)、PD-L2、血红素加氧酶-1(HO-1)、人白细胞抗原-G(HLA-G)、TNF相关凋亡诱导配体、半乳凝素-1和DC-SIGN],产生免疫抑制因子[如IL-10、转化生长因子-β(TGF-β)、IDO、IL-27和一氧化氮(NO)]促进中枢和外周免疫耐受形成[57]。

小鼠实验表明,在同种异体心脏移植前7天注射供者来源的imDC,可以显著延长移植物的存活时间[58]。此外,注射供者来源的DC可防止同种异体皮肤移植物排斥以及GVHD [5960]。另外,pDC也能够促进移植免疫耐受形成[61]。在小鼠模型中,提呈同种异体抗原的pDC可迁移至引流淋巴结,诱导Tregs产生。研究表明,在未服用免疫抑制剂的肝移植患者中,pDC表达的PD-L1和CD86与CD4+CD25+FOXP3+ Tregs的数量呈正相关[62]。

《2.4 中性粒细胞》

2.4 中性粒细胞

中性粒细胞属于小吞噬细胞,来源于骨髓干细胞,占外周血白细胞的50%~70%;表达IgG Fc受体,可以通过补体介导和抗体依赖性途径发挥吞噬和杀伤效应。器官移植后,中性粒细胞首先浸润移植物并表达模式识别受体(PRR)。PRR可与细胞外基质(ECM)中的坏死细胞所释放的损伤相关分子模式(DAMP)相结合,进而诱导ROS和水解酶的产生,加剧移植物缺血再灌注损伤(IRI)[63]。

在移植物IRI阶段,中性粒细胞主要通过以下机制破坏移植物,促进排斥反应的发生:

(1)通过烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶系统产生超氧化物,促进大分子过氧化和移植物不可逆的细胞损伤[6465];

(2)通过释放组织消化酶,如金属蛋白酶-9(MMP-9)和中性粒细胞弹性蛋白酶(NE),打破促进移植物功能的稳态屏障[66];

(3)通过中性粒细胞胞外陷阱(“NETosis”)促进移植物炎症[67]。

据报道,在原发性肺移植物功能障碍患者和肺移植介导的肝脏IRI小鼠模型中,研究者使用脱氧核糖核酸酶(DNAse)溶解NET,减少了急性炎症反应,并显著改善了移植物功能[6869]。

此外,中性粒细胞还可以通过促进适应性免疫应答来诱发器官移植排斥反应。中性粒细胞可通过FasL/穿孔素途径,诱导T细胞趋化因子(C‒C基序)配体(CCL)1、CCL2和CCL5表达,募集活化的CD8+ T细胞[70]。在小鼠皮肤移植模型中,研究者发现通过耗竭中性粒细胞能够减弱同种异体反应性记忆CD8+ T细胞的募集以减缓急性排斥反应[71]。此外,在小鼠原位肺移植模型中,耗竭中性粒细胞能促进免疫抑制介导的免疫耐受的形成,并且减少了移植物APC产生的IL-12和由Th1细胞介导的同种异体反应性免疫应答[72]。

与TCMR不同,临床病理结果表明移植物中性粒细胞增多与AMR有关。在小鼠心脏和肺移植模型中,AMR诱导中性粒细胞浸润,从而破坏移植物[73]。研究表明,中性粒细胞还与移植物慢性排斥反应有关[74]。在发生慢性排斥反应的移植物中,Th17细胞浸润增多,通过分泌IL-17使中性粒细胞在移植物局部聚集,继而通过上述机制介导移植物慢性排斥反应。此外,据报道,在肺移植受者中,IL-17介导的中性粒细胞浸润会增加慢性排斥反应的风险[75]。

主流研究认为中性粒细胞不利于移植物免疫耐受的形成,但仍有部分研究认为中性粒细胞中存在具有可诱导抗炎特性的调节性亚群,可以保护同种异体移植物免受损伤并促进免疫耐受形成。Pillay等[76]研究表明,急性损伤的患者中存在CD16bbrightCD62lo中性粒细胞亚群,这些细胞亚群可通过巨噬细胞抗原复合物-1(Mac-1)实现与T细胞的结合,并释放过氧化氢,从而抑制T细胞增殖。此外,中性粒细胞还能通过其整合素受体在坏死组织周围形成致密簇,将其与健康组织隔离,促进伤口愈合和组织修复,从而抑制移植物炎症[77]。

Christoffersson等[78]发现了一群CD11b+Gr-1+CXCR4hi中性粒细胞亚群,能够以VEGF-A依赖性方式被募集到小鼠无血管胰岛移植物中,协助重建胰岛再灌注。此外,在人类中也发现了具有类似促血管生成功能的以CD49+VEGFR1hiCXCR4hi为特征的中性粒细胞亚群[79]。

《2.5 肥大细胞》

2.5 肥大细胞

肥大细胞(MC)是一类粒状免疫细胞,由骨髓中CD34+/CD117+多能祖细胞分化而来[80]。研究表明,MC参与了固有免疫和适应性免疫应答的调节,在同种异体器官移植免疫耐受形成和排斥反应中起重要作用[81]。

MC参与器官移植排斥反应的主要机制为:

(1)脱颗粒作用。研究表明,使用MC稳定剂色甘酸抑制MC脱颗粒作用,能够改善同种异体肺移植物中闭塞性细支气管炎和肺实质纤维化,预防同种异体肺移植排斥反应[82]。

(2)分泌细胞因子。通过分泌GM-CSF、TNF-α、IL-3、IL-4、IL-5和IL-13,上调内皮细胞中血管细胞黏附分子(VCAM)-1和细胞间黏附分子(ICAM)-1,募集中性粒细胞和T细胞迁移至移植物[83]。

(3)活化成纤维细胞。在肾脏、肺和心脏移植的慢性排斥反应中,MC通过释放促纤维化介质(如组胺、成纤维细胞生长因子-2、TGF-β、肝素、组织蛋白酶G和糜蛋白酶)激活成纤维细胞,促进胶原合成,最终诱导移植物纤维化[83]。

MC在Tregs介导的外周免疫耐受形成中起关键作用。Tregs通过分泌MC生长活化因子IL-9促进MC迁移至移植物中[84]。Tregs通过肿瘤坏死因子受体超家族成员4(OX40)/OX40配体与MC进行相互作用,从而稳定MC并抑制IgE介导的脱颗粒作用[85]。相反,MC能够释放TGF-β、IL-10和特异性蛋白酶,抑制T细胞的增殖并促进Tregs的产生[86]。此外,MC表达MHC-II分子,能够直接提呈抗原给T细胞,诱导产生Th2细胞因子(如IL-4、IL-10和IL-13)并抑制IFN-γ的产生,同时参与幼稚T细胞向Th2细胞的转化,有利于免疫耐受的形成。

《2.6 嗜酸性粒细胞》

2.6 嗜酸性粒细胞

嗜酸性粒细胞因富含嗜酸性颗粒而得名,来源于骨髓干细胞,具有吞噬作用,主要参与速发型超敏反应以及抗寄生虫和病毒感染。研究表明,嗜酸性粒细胞参与同种异体移植物的排斥反应。嗜酸性粒细胞通过表达阳离子颗粒蛋白和IL-5等细胞因子引起组织损伤和移植排斥,而通过中和IL-5则可抑制排斥反应[87]。外周血和移植物活检组织中嗜酸性粒细胞增多与肾脏、心脏和肺移植的急性排斥反应有关[8891]。据报道,在诊断为限制性慢性肺移植物功能障碍(rCLAD)的肺移植受者中,其支气管肺泡灌洗液和血液中嗜酸性粒细胞增多,移植物存活率下降[92]。此外,嗜酸性粒细胞参与肝脏再生,在预测肝脏发生急性排斥反应中具有关键作用[9394]。英国Royal Free医院将移植物活检中嗜酸性粒细胞的增多视为诊断急性排斥反应的关键依据[9596]。

最近的研究表明,嗜酸性粒细胞也可以促进小鼠肺移植模型中免疫耐受的形成[97]。Onyema等[97]证明嗜酸性粒细胞能够下调T细胞介导的免疫应答,且这种下调依赖于嗜酸性粒细胞和T细胞之间程序性死亡配体-1(PD-L1)/ 程序性死亡受体-1(PD-1)介导的突触形成。Th1极化的嗜酸性粒细胞能够通过iNOS依赖性方式干扰TCR/CD3亚基结合和信号转导,从而抑制移植物中CD8+ T细胞增殖[98]。

《2.7 髓源性抑制细胞》

2.7 髓源性抑制细胞

髓源性抑制细胞(MDSC)是一群骨髓来源的未成熟的高度异质性细胞,随体内微环境改变而分化为巨噬细胞、DC和粒细胞,具有免疫抑制功能[99]。大部分人MDSC表达CD11b、CD33、CD34和MHC II类分子,而小鼠中的MDSC则表达CD11b和GR1。根据细胞形态,MDSC可分为粒细胞样MDSC(G-MDSC)和单核细胞样MDSC(M-MDSC),并可根据Ly6C和Ly6G的表达对其进行进一步细分。然而MDSC的表型仍然存在争议[100]。MDSC介导同种异体移植物免疫耐受的机制可能为:

(1)直接抑制免疫原性骨髓细胞(如巨噬细胞、中性粒细胞和DC);

(2)分泌细胞因子和生长因子[如iNOS、精氨酸酶1(Arg1)、HO-1、ROS、IDO、IL-10、TGF-β1等],将免疫原性骨髓细胞转化为致耐受性细胞[101]。

2008年,Dugast等[102]首次在大鼠同种异体肾脏移植耐受模型的血液和移植物中发现CD11b+CD80/86+Sirpα+ 髓样细胞,并将其定义为MDSC。MDSC能够抑制效应T细胞的增殖并引起iNOS依赖性细胞凋亡,同时引起Treg扩增[103104]。在角膜、胰岛、皮肤和心脏移植的小鼠模型中也发现了此类MDSC诱导耐受的机制[105107]。Hock等[108]观察到在接受肾脏移植的患者中,尤其是在患有肾鳞癌而接受肾脏移植手术的患者中MDSC数量的增加,并且与具有较低数量MDSC的受者相比,具有较高数量MDSC受者的移植物存活更久[109]。在一项36名肠移植受者的前瞻性队列研究中,研究者确定了三种MDSC类型,并且发现它们都能够抑制CD4+和CD8+ T细胞增殖以及IFN-γ的产生,从而促进肠移植物的存活[110]。以上研究虽然都表明MDSC对移植物形成免疫耐受具有重要作用,但 MDSC在器官移植中诱导免疫耐受的确切机制仍需要进一步研究。

《3、 适应性免疫细胞》

3、 适应性免疫细胞

《3.1 调节性T细胞(包括 CD4T细胞、CD8T细胞、CD4CD8T细胞)与其他T细胞亚群》

3.1 调节性T细胞(包括 CD4T细胞、CD8T细胞、CD4CD8T细胞)与其他T细胞亚群

研究表明,多个T细胞亚群在器官移植免疫耐受中具有重要作用,包括CD4+ T细胞、CD8+ T细胞、CD4- CD8- T细胞、自然杀伤T(NKT)细胞以及γδ T细胞。

《3.1.1. CD4调节性T细胞》

3.1.1. CD4调节性T细胞

CD4+ Tregs是研究最为深入的调节性T细胞亚群。Tregs能够抑制同种异体移植物排斥反应及GVHD [111]。胸腺来源的Tregs(tTregs)也被称为自然调节性T细胞(nTregs),能够迁移至外周并抑制对自身抗原的反应。Tregs表型具有很大异质性,但Foxp3通常是CD4+ Tregs的特征性标志。抗原也可以诱导Tregs在外周致耐受性环境中表达Foxp3,被称为适应性或诱导性Tregs(iTregs)。tTregs和iTregs均能识别并响应同种异体抗原。然而,研究表明,对同种异体抗原持续应答的Tregs在器官移植免疫耐受中具有更重要的作用[112]。

越来越多的证据表明同种异体抗原反应性T细胞会攻击移植物,造成移植物不可逆性损伤;而Tregs则能抑制T细胞功能从而保护移植物免受破坏。由此可见,调节两者间的平衡对于维持移植物功能至关重要。器官移植前后,过继性Tregs治疗可以增加受者体内Tregs数量,并且诱导免疫耐受。Tregs可通过多种机制抑制免疫细胞活性,参与诱导器官移植免疫耐受,其机制可能为:

(1)分泌抗炎细胞因子(如IL-10、TGF-β和IL-35)抑制效应T细胞增殖;

(2)释放颗粒酶和穿孔素,引起靶细胞凋亡;

(3)表达CD39/CD73,通过产生腺苷和AMP(具有免疫抑制作用的分子)消耗细胞外微环境中的ATP,抑制效应T细胞增殖;

(4)高表达CD25,摄取微环境中更多的IL-2,使其余IL-2依赖性细胞(如效应T细胞,NK)“挨饿”;

(5)通过PD-L1/PD-1与B细胞相互作用,以抗原特异性方式抑制自身反应性B细胞,或通过释放颗粒酶B、穿孔素直接杀死B细胞;

(6)通过表达细胞毒性T淋巴细胞相关抗原4(CTLA4),抑制DC抗原提呈能力和效应T细胞增殖,同时诱导DC产生IDO,促使幼稚T细胞向Tregs分化;

(7)通过表达淋巴细胞活化因子-3(LAG-3)(一种比CD4与MHC-II的结合具有更高亲和力的分子),减弱DC抗原提呈能力,抑制T细胞活化;

(8)诱导单核细胞向M2分化;

(9)诱导产生免疫抑制性表型的中性粒细胞,减少局部炎症反应;

(10)表达诱导型共刺激分子(ICOS),减少2型固有淋巴细胞(ILC2)分泌IL-5和IL-13 [113115]。

研究表明,在动物移植模型中阻断CTLA4或IL-10的活性,能够逆转Tregs介导的免疫调节功能[116];而通过过继性Tregs治疗却可以缓解许多动物模型中出现的急慢性同种异体移植物排斥反应[117]。

《3.1.2. CD8调节性T细胞》

3.1.2. CD8调节性T细胞

与CD4+ Tregs类似,CD8+ Tregs表型也具有异质性,甚至存在CD8+Foxp3- Tregs [118]。研究表明,在服用阿仑单抗作为诱导治疗的肾脏移植患者中,CD8+CD28-调节性T细胞能够抑制机体对移植肾的免疫应答[119]。据报道,在接受同种异体肾脏移植并产生免疫耐受的患者中存在一群能够产生IL-10的CD8+ Tregs,该亚群来源于幼稚CD8+ T细胞,并且通过IL-10依赖性机制发挥作用[120]。而最近的研究表明,IL-2受体β链(CD122)阳性的CD8+ Tregs也能够以IL-10依赖性方式抑制胰岛和皮肤同种异体移植物排斥反应,并且比CD4+ Treg更有效[121]。

CD8+ Tregs参与诱导器官移植免疫耐受的机制可能为:

(1)CD8+Foxp3+ Tregs表达CTLA4,通过与上述CD4+ Tregs相同的机制促进移植耐受形成[122];

(2)CD8+CD28- Tregs上调DC免疫球蛋白样转录物3/4(ILT3和ILT4)的表达,下调共刺激分子(CD80/CD86)和黏附分子(CD54/CD58),从而使DC具有致耐受性[123];

(3)CD8+CD45RClow Tregs高表达糖皮质激素诱导的肿瘤坏死因子受体相关蛋白(GITR),与同种异体反应性APC相互作用,抑制T细胞增殖[124];

(4)CD8+CD122+ Tregs通过MHC-I分子直接识别已经活化的T细胞,继而产生IL-10,抑制免疫应答[125];

(5)CD8+CD122+PD-1+ Tregs 通过PD-1/PD-L1途径与APC相互作用,促进IL-10产生,抑制T细胞活化[126127];

(6)CD8+ Tregs通过分泌IL-34、IFN-γ、TGF-β等细胞因子促进移植物免疫耐受形成[128131];

(7)CD8+ Tregs通过分泌纤维蛋白原样蛋白2(FGL2),与FcγRIIB受体相互作用,抑制DC成熟,诱导B细胞凋亡,促进Breg产生[132133];

(8)CD8+ Tregs通过释放穿孔素介导靶细胞凋亡,另外也可通过表达FasL(与T细胞表面Fas作用)诱导T细胞凋亡[134];

(9)CD8+ Tregs高表达CD122、CD25,摄取微环境中更多的IL-2,使其余IL-2依赖性细胞(如效应T细胞、NK)“挨饿”[135]。

鉴于有核细胞均表达MHC-I,因此CD8+ Tregs与CD4+ Tregs细胞相比,其优势在于供者MHC-I提呈的持久性。将MHC-I+移植物细胞直接提呈给同种异体反应性CD8+ Tregs,继而产生长期有效的免疫耐受,而CD4+ Tregs对于供者APC的直接或间接提呈则是短期的。已有研究表明,在大鼠心脏同种异体移植模型中,间接提呈给CD8+ Tregs甚至比直接识别供者细胞(抑制效应T细胞的同种异体免疫应答)更有效[136]。

CD4+ Tregs和CD8+ Tregs对靶细胞介导的免疫调节机制是互补的。CD4+ Tregs主要抑制幼稚效应T细胞应答,对记忆T细胞应答无效,而CD8+ Tregs则能恰好抑制记忆效应T细胞应答[137]。另外,这两种Tregs产生的细胞因子能够促进体内免疫耐受环境的形成。CD8+ Tregs分泌的TGF-β、IL-10能促进CD4+ Tregs扩增,而CD8+CD45RClow Tregs分泌的IL-34 能诱导产生Mregs、CD4+ Tregs和CD8+ Tregs。研究表明,在大鼠心脏同种异体移植模型中,IL-34能够同时诱导CD4+CD25+ Tregs和CD8+CD45RClow Tregs,并且将这两种Tregs过继转移到新的移植受者中,能够继续产生促进免疫耐受的效果[129]。

《3.1.3. CD4CD8调节性T细胞》

3.1.3. CD4CD8调节性T细胞

CD4-CD8- Tregs(DN Tregs)表达CD3和αβTCR,但不表达CD4、CD8或NK1.1。动物模型研究表明,DN Tregs能够阻止CD4+和CD8+ T细胞介导的免疫应答和同种异体移植物排斥[138]。DN Tregs可通过多种方式抑制免疫应答:

(1)利用CD95-CD95L途径诱导T细胞凋亡;

(2)表达高水平CTLA4,下调DC共刺激分子CD80和CD86表达,诱导DC凋亡;

(3)通过穿孔素依赖途径诱导B细胞凋亡[139];

(4)通过胞啃作用获得来自APC提呈的整个MHC-抗原复合物,并在自身细胞表面表达,随后与CD8+ T细胞结合,通过FasL/Fas途径介导其凋亡[140]。研究表明,在小鼠心脏同种异体移植模型中,过继性DN Tregs治疗能够延长移植物存活并增加Foxp3+ Tregs数量[141]。另外,DN Tregs在抑制胰岛、皮肤、造血干细胞移植排斥反应方面也具有重要作用[142]。

《3.1.4. 自然杀伤T细胞》

3.1.4. 自然杀伤T细胞

NKT细胞是一群同时表达T细胞表面标志(TCR、CD3)和NK细胞表面标志(CD56或NK1.1)的特殊的调节性T淋巴细胞亚群[143]。NKT细胞可通过TCR识别CD1d/脂抗原后迅速分泌细胞因子(如IL-4、IL-10和IFN-γ),亦可分泌穿孔素或通过Fas/FasL途径杀伤靶细胞,导致器官移植免疫排斥发生。此外,NKT细胞也能够促进移植物免疫耐受的形成[144]。Ikehara等[145]的研究表明,在小鼠胰岛移植模型中,Valpha14+ NKT细胞促进了同种异体移植物免疫耐受的形成。在小鼠造血干细胞移植模型中,过继性NKT细胞治疗抑制了急性GVHD的发展以及IFN-γ和TNF的产生[146]。最近的研究则表明,在小鼠慢性GVHD模型中,过继性恒定NKT细胞治疗能通过扩增供者Tregs,显著改善慢性GVHD [147]。

《3.1.5. γδ T细胞》

3.1.5. γδ T细胞

γδ T细胞是高度保守的淋巴细胞亚群,占总循环淋巴细胞的0.5%~6%、循环CD3+ T细胞的4%~10%和组织驻留T细胞的10%~50% [148149]。γδ T细胞具有异质性,根据TCR δ链可将其分为Vδ2+ γδ T和Vδ2- γδ T [150151]。作为固有免疫和适应性免疫之间的桥梁,γδ T细胞在同种异体移植物免疫排斥及免疫耐受中具有重要作用[152]。在小鼠肾脏的IRI模型中,缺血性损伤后的γδ T细胞的早期浸润导致了αβ T细胞浸润和随后的肾小管损伤,而γδ T细胞敲除后的小鼠肾脏的IRI得到改善[153]。研究表明,移植受者若有巨细胞病毒(CMV)感染,会导致CMV特异性Vδ2- γδ T细胞增殖,最终通过DSA介导的ADCC作用导致肾同种异体移植物损伤,发生急性排斥反应[154155]。

在小鼠肺移植模型中,IL-17+ γδ T细胞通过TCR依赖性或非依赖性途径被激活,分泌IL-17,发生急性排斥反应[156157]。同样,在小鼠心脏移植模型中,产生IL-17的γδ T细胞会导致移植物急慢性排斥反应的发生,耗竭γδ T细胞则能降低血清IL-17,减少炎性细胞浸润,延长移植物存活时间[158159]。

虽然γδ T细胞在器官移植免疫排斥和免疫耐受中的作用仍需进一步研究,但越来越多的证据表明γδ T细胞在形成免疫耐受中具有重要作用。研究表明,与同龄健康对照组相比,自发产生耐受性的肝移植受者中γδ T细胞数量显著增加,并且表达Vδ1和Vδ2的γδ T细胞比例发生改变(Vδ1∶Vδ2 > 1)[160]。Vδ1 γδ T细胞能够产生IL-10并促进Th2产生,缓解与Vδ2 γδ T细胞升高有关的肝移植急性排斥反应[161162]。在皮肤移植前,受者通过门静脉免疫接种杂交瘤细胞,能够诱导寡克隆γδ TCR+细胞的扩增,促使IL-4和IL-10的产生,抑制IL-2和IFN-γ的产生,提高移植物存活率[163]。另外,在小肠移植和胰岛移植的动物模型中,γδ T细胞浸润的增加均缓解了移植物免疫排斥反应[164165]。

《3.2 调节性B细胞》

3.2 调节性B细胞

B细胞在免疫系统中具有多种功能,能够通过提呈抗原和产生细胞因子及抗体介导同种异体移植物排斥。然而,B细胞还可以利用调节作用抑制同种异体移植物排斥反应[166]。已在人和小鼠中鉴定出Bregs,并且两者均能够分泌IL-10和IL-35等抗炎细胞因子。Bregs具有复杂的异质性,在人和小鼠中具有不同的表型和调节功能。小鼠Bregs亚群通常表达高水平的CD1d、CD5、CD21、CD24和IgM,而人Bregs则表达CD19、CD24和CD38 [167]。研究表明,Bregs可以抑制小鼠实验性自身免疫性脑脊髓炎中的炎症反应,过继转移LPS活化的Bregs能够保护非肥胖糖尿病小鼠免于糖尿病的侵害[168169]。人体中Bregs的消耗也可以促进多发性硬化症(MS)患者的牛皮癣,加剧炎症或加重溃疡性结肠炎[170]。另外,在器官移植中,TIM-1+ Bregs能够延长小鼠同种异体移植物存活时间,而TIM-1-/-小鼠则表现出IL-10+ Bregs缺陷并加速移植物排斥,过继性TIM-1+ Bregs治疗能显著延长移植物的存活时间[171172]。Bregs参与诱导器官移植免疫耐受的机制可能为:

(1)通过分泌IL-10抑制Th1、CTL、Th17细胞释放促炎细胞因子(如IFN-γ和IL-17),从而抑制单核细胞活化以及DC成熟,并通过CD80/CD86诱导Tregs生成;

(2)通过分泌IL-35抑制Th1、Th17和APC活化,同时引起Tregs扩增并促进产生能够分泌IL-35和IL-10的Bregs [173174];

(3)通过分泌TGF-β诱导无反应性CD8+ T细胞和Tregs发育[175];

(4)通过表达FasL和颗粒酶B抑制效应T细胞扩增或诱导效应T细胞凋亡[176177];

(5)通过表达PD-L1抑制Tfh分化和增殖;

(6)产生能够限制炎症的抑制性IgG4和唾液酸化IgG [178]。

临床研究表明,对于可操作性耐受的患者(如肾脏移植受者),在不服用免疫抑制剂后,多年来一直保持稳定的移植物功能;与发生免疫排斥的受者相比,其外周B细胞的绝对数量和比例均升高。这表明B细胞可能在器官移植免疫耐受形成中发挥调节作用[179180]。另一项研究表明,与服用免疫抑制剂的患者相比,在不服用免疫抑制剂的耐受性肾脏移植患者中,其外周血中幼稚型和过渡型B细胞数量增多,尿沉渣细胞中上调表达CD20的B细胞增多[181]。

《4、 器官移植细胞治疗的临床转化》

4、 器官移植细胞治疗的临床转化

过继性细胞治疗是最近开发并用于促进同种异体移植物形成免疫耐受的方法。移植前或移植后将调节性免疫细胞回输至受者体内,能够抑制效应细胞的活化并促进移植物形成免疫耐受[182]。目前在全球范围内,关于在实体器官移植中通过过继性细胞治疗诱导移植物免疫耐受的临床试验大部分仍在进行中,很少有相关研究被报道。

研究表明,过继性Treg治疗能够控制许多动物移植模型急慢性排斥反应的发生并且有可能被应用于临床。2018年,西北大学(美国芝加哥)进行的一项名为TRACT的临床试验结果已经被报道 [183]。这是一项Ⅰ期剂量递增安全性研究(NCT02145325),该研究将体外扩增的自体多克隆Tregs回输至肾脏移植受者体内以评价其安全性。9名肾脏移植受者被分为三组,分别在移植后60 d对他们回输0.5 × 10 9个、1 × 10 9个、5 × 10 9个Tregs。从移植前1个月收集的白细胞中分离Tregs并离体扩增21 d。在随访期间,未发现由于Tregs回输而造成的严重不良事件,并且受试者均未出现与非特异性免疫抑制相关的机会性感染。与相同免疫抑制方案下的对照组相比,回输Tregs的受者体内的Tregs数量增加。由于药物不耐受或服药依从性不高,在两名受者中观察到DSA的存在。总体而言,将体外扩增的Tregs回输至肾脏移植受者是安全的,并且TRACT试验的研究人员正在计划进行II期试验。

此外,日本北海道大学医院(Hokkaido University Hospital)和加利福尼亚大学旧金山分校已经成功完成了利用扩增受者Tregs进行回输的临床试验。Todo等[184]报道了10名肝移植受者接受体外扩增的Tregs富集的细胞产物的回输,并且已有7名受试者成功停用免疫抑制剂。Chandran等[185]报道了加利福尼亚大学旧金山分校对肾脏移植受者进行自体多克隆Tregs回输的临床试验。他们的研究(NCT02088931)表明,在已经接受移植并且正在服用免疫抑制剂的移植受者中,Tregs的分离、扩增、回输是安全可行的。

目前,欧盟ONE Study项目组正在进行一项在活体肾脏移植受者中使用自体致耐受性DC进行细胞治疗,以评估其安全性和可行性的I/II期临床试验(NCT02252055)[186]。Thomson等[187]还提出进行一项I/II期临床安全性试验,研究使用供者来源的DCregs联合常规免疫抑制剂治疗对临床和亚临床肾脏移植排斥反应的影响。过继性MSC治疗以诱导肝脏、肺、肾脏移植患者免疫耐受的临床试验也已经开展[188190]。Perico等[191]的一项研究表明肾脏移植前回输自体MSC可以保护移植肾免于移植物功能障碍(NCT00752479)。虽然开展过继性Mregs治疗的临床试验数量不多,但结果却很有希望。两名受者在过继性Mregs治疗6年后仅需极低剂量的他克莫司单药治疗即可维持肾功能的稳定(NCT00223067)[192]。虽然上述所有过继性细胞治疗在安全性、可行性和耐受性方面显示出前景,但是给药途径、给药时间、给药剂量以及与其他治疗方法的最佳组合仍然有待进一步探索。

《5、 嵌合抗原受体技术在过继性细胞治疗中的应用》

5、 嵌合抗原受体技术在过继性细胞治疗中的应用

目前,嵌合抗原受体(CAR)T细胞疗法在临床抗肿瘤领域已显示出巨大的潜力,但其在免疫细胞(如Tregs)诱导移植物免疫耐受中的应用迄今为止却仅限于实验室。然而,该技术有望进一步提高某些免疫细胞抗原特异性,从而更好地诱导移植物免疫耐受。最近,已有报道显示,新型CAR-Tr​​eg疗法在动物移植模型中具有重要作用。用编码CAR基因修饰的CAR-Tregs是非MHC依赖性的,并且比传统的Tregs具有更好的抗原特异性。Hombach等[193]之前使用CAR技术对Tregs进行了基因改造,并设计了具有明确特异性的Tregs。CAR-Tregs诱导移植物免疫耐受的机制与多克隆Tregs类似。Pierini等[194]通过构建mAb-CAR-Tregs并使其靶向特定组织部位,成功地缓解了小鼠模型GVHD症状。mAb-CAR-Tregs靶向同种异体移植物上的MHC I类蛋白,并延长了胰岛同种异体移植物和二次皮肤移植物的存活时间。

同样,在动物皮肤移植模型中,Boardman等[195]和Noyan等[196]针对HLA-A2设计了CAR-Tregs用于诱导免疫耐受,结果表明CAR-Tregs比多克隆Tregs能够更有效地抑制移植物排斥。同样,针对FVIII抗体设计的ANS8-CAR-Tregs可以显著抑制血友病A患者中FVIII特异性效应T细胞的增殖,在进一步用于血友病A患者的致耐受性治疗方面具有很大的潜力[197]。目前,未见将CAR技术应用于其他免疫细胞以诱导移植物免疫耐受的报道。

《6、 结论》

6、 结论

虽然T细胞被认为是参与器官移植免疫排斥和免疫耐受过程的主要效应细胞,但近年来固有免疫细胞在移植免疫应答中发挥的作用也逐渐受到重视。

尽管参与器官移植排斥反应的类型多样,但大致可分为两类:急性排斥和慢性排斥。无论针对何种排斥反应,术前精确的组织配型和适当的脱敏治疗(如血浆置换、免疫吸附和大剂量静脉注射免疫球蛋白)仍然是预防排斥反应发生的基本方法。对于移植术后的急性排斥反应,激素冲击疗法、强效免疫抑制剂、抗胸腺免疫球蛋白(ATG)或抗T淋巴细胞免疫球蛋白(ALG)、血浆置换、免疫吸附和静脉注射免疫球蛋白治疗仍是常规的临床治疗策略。

针对慢性移植排斥虽然当前没有有效的治疗方法,但我们认为利用过继性免疫细胞预防和治疗慢性移植排斥的疗法将在未来几年得到广泛应用并显著改善患者预后。对于过继性细胞治疗,未来应努力降低其免疫原性,提高通用性和特异性[如开发通用嵌合抗原受体Tregs(U-CAR-Tregs)],术前鼓励使用通用型过继性细胞治疗产品,从而通过诱导免疫耐受提高移植成功率。

虽然可考虑将动物器官用于人体器官移植,但动物器官引起的免疫原性是限制将其应用于人体器官移植的主要障碍。因此,未来应侧重于在临床需求的背景下开展研究,应针对器官移植患者的需求,进一步优化细胞产品制造方法(如U-CAR-Tregs),优化相关细胞产品设备(如细胞分选仪),开发特定的细胞产品以及完善细胞产品的质控程序。