《1、 引言》

1、 引言

随着人类对化石燃料的依赖不断增加,导致二氧化碳(CO2)排放量激增[12]。据报道,2021年,人为CO2排放总量达到3300亿吨,其中,四分之三以上来自于化石燃料的燃烧[1,34]。CO2排放引起的全球气候变化已成为世界范围内不容忽视的环境问题[56]。在过去的几十年里,大量CO2被封存在全球范围内的深层咸水层中[79]。近年来,枯竭油气藏被视为CO2封存的理想地质体,油气藏不仅地质特征明确,还拥有包括地面设施、注入井和运输管道在内的必要基础设施[1013]。当被注入枯竭的油气藏时,CO2可作为驱油剂提高残余油采收率,这可抵消部分因CO2捕集和封存产生的成本[1416]。

除地质封存外,CO2因其在改善油藏方面表现出的流体特性而被广泛应用油气开发。CO2提高采收率的基本机理在于降低界面张力(IFT)、降低原油黏度、原油溶胀以及对轻烃组分的抽提作用[1724]。与天然气、空气、氮气等其他传统气体相比,CO2与原油的最小混相压力(MMP)较低。因此,CO2被认为是实现油气混相驱的更好选择[25]。据报道,第一个商业化CO2驱油项目是由美国雪佛龙公司于1981年在得克萨斯州SACROC投资的Kelly-Snyder油田项目[26]。目前,常规油藏CO2 驱油技术已逐渐成熟,截至2021年,全球已实施了数百个CO2驱油项目,仅在美国就贡献了每天超过300 000桶[bbl(1 bbl = 158.9873 L)]的累计原油产量[27]。随着水平井和多级水力压裂技术的发展,CO2驱正在被广泛应用于提高致密油采收率[2831]。在CO2提高采收率技术用于开采致密油机理方面,大量的研究工作已经开展[3235],部分研究发现由于储层中存在复杂的裂缝,会导致开发早期出现严重的气窜现象,因此,传统的CO2提高采收率技术在致密储层中应用效果差[3638]。

水气交替注入可有效控制流度比,比单一的CO2驱具有更好的波及体积和驱替效率[3941]。水气交替注入过程水是间歇性注入的,可以有效防止开发早期气窜[42]。前人研究已经全面考察了影响水气交替注入的因素,包括循环次数、段塞比和段塞尺寸等[43]。对于致密油藏,焖井时间是影响CO2与原油之间的传质的主要控制参数之一[4448]。

除了用于提高原油采收率外,CO2 EOR还可将CO2大量封存在油藏地质体中,从而缓解温室效应[4953]。第一个CO2 EOR和封存项目于2000年在加拿大Weyburn油田顺利实施[5457],该油田的CO2封存能力超过2500万吨[58]。CO2地质封存最近已成为油气行业的热门话题。CO2封存的基本机理包括矿化封存、溶解封存、束缚封存和构造封存[59]。尽管大多数研究只分析了非常有限的数据和简单的案例,但最近的研究已经着手解决原油采收率和CO2封存协同优化问题[6067]。因此,如何揭示CO2提高采收率和地质封存间的协同优化难题仍然存在挑战。例如,在CO2 提采和封存过程中的一些现象会对最终原油采收率和CO2封存能力产生负面影响,包括CO2超覆、重力分异和黏性指进等[6869]。在未来的研究中应重点关注CO2提高采收率和封存间的协同作用机理,最大限度地提高油藏采收率和油藏地质体CO2封存能力。

本文提出了新一代CO2 EOR方法,即封存驱动型CO2 EOR,其目标是在最大限度地提高石油采收率的同时,将CO2封存在油藏地质体中,从而实现CO2净零排放甚至负排放;采用DME作为一种新型的化学助剂,用来辅助CO2提高原油采收率,同时强化油藏地质体中的CO2封存。本文系统阐述了封存驱动型CO2 EOR方法的基本原理。未来CO2 EOR技术不应只关注单一采收率目标,更应着眼于如何提高CO2在油藏中的封存。

《2、 建模方法》

2、 建模方法

本文首先采用CMG-GEM组分模拟方法研究封存驱动型CO2 EOR在Weyburn油藏的应用效果,评价指标包括提高原油采收率和CO2地质封存率。Weyburn油藏位于加拿大萨斯喀彻温省东南部,储层深度为1310~1500 m [70]。油藏温度和压力分别为336.15 K和14.0 MPa。油藏平均渗透率、孔隙度和初始含油饱和度分别为20.0 mD、30%和0.8,渗透率在各个方向为各向同性。根据Pedersen分类原则,储层流体成分可分为12个拟组分[71]。采用经验公式[71]估算储层流体的临界性质,而其临界性质是分子量和密度的函数。采用CMG-WinProp回归工具,根据原始油藏条件设置流体性质来调整这种相关性。表1给出了流体样本和经验相关性之间的匹配结果,验证了这种经验相关性的可靠性。Weyburn油藏流体的物理性质和各组分间的二元相互作用系数见附录A中的表S1和表S2,油藏的相对渗透率取自文献[72]。

《表1》

表1 Weyburn油藏流体物理性质

Saturation pressure (MPa)Viscosity (mPa∙s)Density (kg∙m-3)Swelling factor (m3∙m-3)Gas-oil ratio (m3∙m-3)
Sample4.921.76806.41.08532
Correlation4.921.76805.81.08932
Relative error (%)00‒0.070.370

基于表1中储层和流体样品的物理性质建立二维模型。模拟储层的网格尺寸为50×50×1,在xyz方向的尺寸分别为2500 ft、2500 ft、20 ft(其中,1 ft = 0.3048 m)。注水井位于油藏模型左侧的网格模块1,生产井位于模拟油藏的另一侧。生产井井底压力保持在10.0 MPa,注气速率恒定为700 m3∙d‒1。模拟时间设定为10年,DME浓度设定为20.0 mol%。为进一步评估该模型的可靠性,采用细管实验模拟计算CO2与油样之间的混相压力,对比发现模拟计算压力与实验数据(14.2 MPa)[70]非常接近,约为14.0 MPa,相对误差仅为-1.41%。

《3、 相态特征测量》

3、 相态特征测量

图1为采用相态测试装置测量平衡相组成和CO2溶解度的流程图。其中,油样的黏度、密度、膨胀系数和饱和压力分别为1.81 mPa∙s、810 kg∙m-3、1.072 m3∙m-3和4.90 MPa,与数值模拟模型中使用的模拟油物性相似。首先,在给定的温度和压力下将原油注入PVT筒。然后,在较高压力下注入给定摩尔浓度的二甲醚(DME)。此后,在相同温度条件下将CO2注入PVT筒中。在高压条件下,将原油-DME-CO2体系压缩成单相。

《图1》

图1 PVT装置测量原油相组成及CO2溶解度示意图。

采用气相色谱(GC)测量原油-DME-CO2体系的组成。然后,将系统压力设置为实验压力并保持至少24 h以上,直到系统达到平衡。采用气液相色谱法测量气相和油相的组成,用于分析原油中CO2的溶解度。实验装置耐压高达100.0 MPa和耐温473.15 K。温度和压力测量的误差分别控制在±0.5 K和±0.1 MPa以内,而溶解度误差控制在±0.5%以内。

《4、 结果与讨论》

4、 结果与讨论

《4.1 CO在原油中的溶解度》

4.1 CO在原油中的溶解度

CO2在原油中的溶解度对于CO2提高原油采收率和封存至关重要。图2表示在不同压力条件下加入DME后CO2在原油中的溶解度。研究发现,CO2的溶解度受系统压力的影响很大;随着压力的增加,CO2在原油中的溶解度增加。更有趣的是,当压力大于4 MPa时,DME促进CO2在原油中的溶解;随着DME浓度增加,CO2溶解度进一步提高。加入DME后,DME分子可与碳链形成氢键,导致长碳链重新形成更规则有序的排列,有利于CO2在原油中的进一步溶解。此外,溶解度的提高使更多的CO2封存在原油中,这对于油藏地质体中CO2封存至关重要。

《图2》

图2 不同压力条件与DME浓度下CO2在原油中的溶解度。

图3表示在不同温度条件下CO2-原油和CO2-DME-原油体系气相中轻质组分(即C1~C5)的摩尔分数。为了验证模型的可靠性,我们将模型的预测结果与实验数据进行了对比。由图可见,预测结果与实验数据拟合度良好,验证了模型的可靠性。如图3所示,随着温度升高,气相中轻烃的摩尔分数增加,表明在较高温度条件下有更多的轻烃被CO2抽提出来。此外,CO2-DME-原油体系气相中轻烃的摩尔分数小于CO2-原油体系中轻烃的摩尔分数。这表明,DME在很大程度上抑制了CO2对轻组分的抽提作用,尤其是在高温条件下。在油藏中实施CO2驱油项目时,CO2溶解到原油中,原油中的轻质组分由于CO2抽提作用而“气化”。然而,随着DME的添加,大多数轻烃则被“固定”在油相中,这有利于原油的可持续开发。

《图3》

图3 不同温度条件下CO2-原油与CO2-DME-原油混合物气相中的轻质组分(C1~C5)摩尔分数。

《4.2 强化采收率》

4.2 强化采收率

DME有助于提高CO2在原油中的溶解度,有利于CO2提高原油采收率的潜力,同时有助于CO2在油藏中的封存。在本节中,将传统CO2 EOR与封存驱动型CO2 EOR的性能进行了对比,评价DME在原油提采方面的潜力。图4展示了在不同注气速率下传统CO2 EOR和封存驱动型CO2 EOR原油采收率随时间的变化曲线。如图4所示,在传统CO2 EOR初始阶段,原油采收率呈线性增加,直到生产井产出CO2(约第1200天)。随着注气速率的增加,原油采收率增加,气窜后,产油速率降低,提采效率逐渐趋于稳定。加入DME后,开发初期采收率较低,而在开发后期,采收率持续增加,直至高于传统CO2 EOR,表明封存驱动型CO2 EOR有利于原油的可持续开发。

《图4》

图4 在不同注气速率下传统CO2 EOR和封存驱动型CO2 EOR采收率与生产时间的关系。

图5展示了传统CO2 EOR和封存驱动型CO2 EOR在注入孔隙体积(PV)数为0.5时油藏中含油饱和度的分布。可以看出,在主要渗流通道中,大部分原油被驱替,导致含油饱和度相对较低。对于传统CO2 EOR,其主要渗流通道含油饱和度仍高于0.40。对比来看,加入DME后,主要渗流通道内的原油被有效动用,其含油饱和度普遍低于0.32。传统CO2驱波及效率较低,导致大部分原油未被触及,而封存驱动型CO2 EOR有效扩大了波及体积,在提高原油采收率方面具有明显优势。

《图5》

图5 注入量为0.5 PV时的油藏含油饱和度分布。(a)传统CO2 EOR;(b)封存驱动型CO2 EOR(INJ:注入井;PROD:生产井)。

为进一步提高原油采收率,转变开发方式,采用水气交替注入的开发方式。图6展示了在不同井底压力条件下采用水气交替注入时原油采收率随生产时间的变化曲线。对比图4图6可以发现,水气交替注入比传统气驱具有更高的原油采收率。超临界态CO2的黏度低,易发生重力分异作用,油藏内部油气接触前沿不稳定,导致传统注气开发驱油效率低。水气交替注入克服了上述缺点,在提高原油采收率方面具有明显优势。如图6所示,在开发后期,采用水气交替注入方式的封存驱动型CO2 EOR的原油采收率高于采用传统的水气交替注入方式的CO2 EOR。这表明,采用水气交替注入方式,封存驱动型CO2 EOR可实现原油的可持续开发。

《图6》

图6 不同井底流动压力条件下水气交替注入时采收率与生产时间的关系。

《4.3 强化CO封存》

4.3 强化CO封存

本节研究CO2 EOR过程中DME对CO2封存率的影响。图7展示了传统CO2 EOR和封存驱动型CO2 EOR过程中CO2封存率随生产时间的变化规律。其中,CO2封存率定义为油藏内封存的CO2与注入CO2总量的比值。在开发初期(<1200天),在低注气率下,油藏地质体具有非常高的CO2地质封存能力。在开发后期,CO2在残余油、岩石孔隙中逐渐饱和,导致CO2封存率逐渐降低。对于两种开发方案,CO2封存率随气体注入速率的增加而降低。当注气速率较高时,容易发生气窜,CO2流经主流道而产出,导致CO2封存率降低。如图8所示,相同条件下(即相同注气速率和生产时间),封存驱动型CO2 EOR的CO2封存率明显高于传统CO2 EOR。因此,可以合理地推断,DME可以作为一种高效助剂用于提高油藏中CO2的封存率。

《图7》

图7 不同注气速率下传统CO2 EOR与封存驱动型CO2 EOR的CO2封存率与生产时间的关系。

《图8》

图8 不同井底流动压力条件下以水气交替方式注入CO2 EOR与封存驱动型CO2 EOR的CO2封存率与生产时间的关系。

针对水气交替注入方式计算CO2封存率。图8展示了不同井底压力条件下水气交替注入方式下传统CO2 EOR和封存驱动型CO2 EOR的CO2封存率随生产时间的变化曲线。一般来说,水气交替注入方式比传统注气具有更高的CO2封存率(图7图8)。水气交替注入可以克服重力分异和气体的黏性指进效应,有利于提高CO2在油藏内的波及体积和CO2封存效率。采用水气交替注入开发方式,封存驱动型CO2 EOR比传统CO2 EOR具有更高的CO2封存率,高达0.95,即使在生产3000天之后也是如此。图9表示井底压力为6.0 MPa、生产时间为2000天时,油藏分别进行封存驱动型CO2 EOR和传统CO2 EOR后,油藏中游离态与溶解态CO2比值的分布图。可以看出,溶解态CO2的量高于游离态CO2。此外,距离生产井越近,溶解的CO2的相对含量越少。然而,DME的加入会导致游离态与溶解态CO2的比例降低,证明DME有助于提高CO2在油藏地质体中的封存。

《图9》

图9 井底压力为6 MPa、生产2000天后油藏中游离态与溶解态CO2比值。(a)水气交替封存驱动型CO2 EOR;(b)水气交替CO2 EOR。

《4.4 封存驱动型CO EOR项目经济性分析》

4.4 封存驱动型CO EOR项目经济性分析

本文首次提出了封存驱动型CO2 EOR概念,即在最大限度地提高原油采收率的同时,实现CO2在油藏地质体中的封存,以实现CO2净零排放甚至负排放的目标。此处,CO2净排放的定义为原油燃烧所排放的CO2(约0.0027 t∙bbl-1)与油藏地质体中封存的CO2之差[73]。假设一次采油和二次采油的原油采收率为30%。根据本文模拟结果,传统CO2 EOR的原油采收率可以达到60%,而封存驱动型CO2 EOR和采用水气交替注入方式的封存驱动型CO2 EOR提高原油采收率分别为68%和73%。CO2 EOR项目的经济性很大程度上取决于项目周期内CO2气源成本和油价[73]。本文假设以某个产油量为两亿桶的油田为例进行分析,如表2所示。

《表2》

表2 假设经济分析中的前提与物理性质

Development methodTotal recovery (% OIP)Total oil recovery (×106 bbl)CO2 EOR oil recovery (million barrels)CO2injected (Mt)CO2emitted on use (Mt)Net CO2 emitted (Mt)CO2 emitted from incremental production (Mt)Net CO2 emitted from incremental production (Mt)
Primary and secondary production30600025.825.8
Conventional CO2 EORa60120601251.639.625.813.8
Storage-driven CO2 EORb68136763958.4819.4832.68-6.32
Water alternating storage-driven CO2 EORb73146865162.7811.7836.98-14.02

假设油藏在一次采油和二次采油之后,分别开展传统CO2 EOR、封存驱动型CO2 EOR和水气交替注入方式的封存驱动型CO2 EOR。

图10展示了油田生命周期内CO2净排放量与累计产油量间的关系曲线。在一次采油和二次采油过程中,CO2排放量随着原油产量的增加而线性增加。随着传统CO2 EOR的实施,部分CO2注入油藏后被封存,抵消了部分由于原油燃烧产生的CO2。如果采用封存驱动型CO2 EOR,在油藏中封存的CO2超过了由于原油燃烧所产生的CO2,即油藏地质体中封存的CO2不仅抵消了当前的CO2排放量,还抵消了过去排放的CO2排放量,导致CO2净排放量呈线性下降趋势,如图10所示。当封存驱动型CO2 EOR采用水气交替注入方式时,油藏地质体中的CO2封存量进一步提高,累计产出原油燃烧所产生的CO2净排放量下降幅度更明显。如图10(右)所示,采用传统CO2 EOR技术增产时,CO2净排放量为13.8 Mt,而封存驱动型和水气交替注入方式的封存驱动型CO2 EOR所产生的CO2净排放量均为负值,分别为-6.32 Mt和-14.02 Mt。可以看出,封存驱动型CO2 EOR和水气交替注入方式的封存驱动型CO2 EOR的CO2封存量远超CO2净排放量,这表明封存驱动型CO2 EOR可同时实现原油增产和CO2减排目标。

《图10》

图10 油田生命周期内CO2净排放量与累计产油量间的关系曲线。

CO2 EOR项目的经济性在很大程度上取决于当前油价、CO2成本以及其他相关成本等[73]。表3是对传统CO2 EOR项目和封存驱动型CO2 EOR项目进行的经济分析。假设整个EOR项目周期内低位油价、参考油价以及高位油价分别为40 USD∙bbl-1、60 USD∙bbl-1以及80 USD∙bbl-1。本次经济分析综合考虑了CO2成本、油价及其他相关成本。尽管封存驱动型CO2 EOR项目的原油产量高于传统CO2 EOR项目,但就EOR项目利润率来说前者小于后者。通过调整EOR方案后,可以看出,封存驱动型CO2 EOR,尤其是采用水气交替注入方式的封存驱动型CO2 EOR项目利润最高。油价、CO2成本以及CO2排放征收费用均可显著影响项目的整体利润[73]。换而言之,如果不对CO2排放进行强制收费,封存驱动型CO2 EOR项目可能不会对项目投资者产生经济方面的吸引力。分析表明,为了与传统CO2 EOR项目达到收支平衡,封存驱动型CO2 EOR项目所需的额外成本范围为56~60美元∙Mt-1,采用水气交替注入方式的封存驱动型CO2-EOR项目所需的额外成本范围为15~22美元∙Mt-1

《表3》

表3 传统CO EOR与封存驱动型CO EOR的经济分析

Oil price (USD∙bbl-1)CO2 acquisition cost (USD∙t-1)CO2 acquisition cost (USD∙bbl-1 production)Other related costs (USD∙bbl-1)Net pretax margin (USD∙bbl-1)CO2 EOR production (million barrels)EOR project margin (million USD)CO2injected (Mt)CO2 price to break even (USD∙Mt -1)Project margin (million USD)a
Conventional CO2 EORb80-39-15-353060180012
60-29-12-35136078012
40-19-8-35-360-18012
Storage-driven CO2 EORc80-39-31-56-776-5323960638
60-29-23-56-1976-14443957-274
40-19-15-56-3176-23563956-1186
Water alternating storage-driven CO2 EORc80-39-25-45108686051182390
60-29-15-45086051151530
40-19-10-45-1586-12905122240

《5、 结论》

5、 结论

本文提出了一种封存驱动型CO2 EOR方法,将DME用作CO2驱的助剂,一方面辅助提高原油采收率,另一方面有助于CO2在油藏地质体中的封存。主要结论如下:

实验结果表明,DME在很大程度上抑制了较轻组分从原油中的“逸出”,在高温条件下效果尤为显著;此外,DME有利于提高CO2在原油中的溶解度,在高压(>4 MPa)条件下效果尤为显著。

模拟结果表明,封存驱动型CO2 EOR在扩大波及效率方面优于传统CO2 EOR,可显著提高原油采收率,尤其是在产油后期。结果表明,DME通过辅助CO2驱有利于原油的高效可持续开发。此外,采用水气交替注入的方式进行开发,原油采收率远高于传统注气方案。

与传统CO2 EOR相比,封存驱动型CO2 EOR在油藏地质体中的封存率更高。当采用水气交替注入方式时,CO2封存率进一步提高。结果表明,DME可用作CO2驱的化学助剂,用以提高原油采收率,同时有助于CO2在油藏地质体中的封存。

通过封存驱动型CO2 EOR项目封存的CO2量远高于产出原油燃烧所产生的CO2排放。因此,通过该技术封存的CO2不仅抵消了当前的CO2排放量,还可以抵消过去的排放量。此外,与封存驱动型CO2 EOR项目相比,采用水气交替注入形式的封存驱动型CO2 EOR项目,在油藏地质体中封存的CO2总量更大。然而,如果对CO2排放不征收任何排放税,与传统CO2 EOR相比,封存驱动型CO2 EOR对投资者仍然没有经济吸引力。