期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第26卷 第7期 doi: https://doi.org/10.1016/j.eng.2023.02.016

可去除染料——N-聚糖多方法深入分析中的缺失环节

a Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
b glyXera GmbH, Magdeburg 39120, Germany
c Otto-von-Guericke University, Chair of Bioprocess Engineering, Magdeburg 39106, Germany

收稿日期: 2022-09-28 修回日期: 2022-12-21 录用日期: 2023-02-15 发布日期: 2023-06-01

下一篇 上一篇

摘要

随着聚糖在健康和疾病中的作用不断被阐明,很明显,聚糖的巨大复杂性也不可被忽视。为了充分描述聚糖结构,本文开发了一种综合方法,结合了一套成本效益好、应用广泛和易于操作的分析方法。本文工作流程的关键特点是利用可移动荧光标记——以氯甲酸-9-芴基甲酯(Fmoc)为例——来弥补不同糖组学分析方法之间的差距,特别是毛细管电泳-激光诱导荧光检测(xCGE-LIF)和基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)。通过对从鸡卵白蛋白、马血清和牛转铁蛋白中选择的复杂N-聚糖的详细结构进行分析,说明了本文所提方法的分析能力。此外,这种方法“可视化”了迄今为止难以识别的N-聚糖——如人类免疫球蛋白A上的硫酸化聚糖——包括聚糖结构的微小变化,期望为生物标志物的发现提供有用的新靶点。

补充材料

图片

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

参考文献

[ 1 ] Watkins WM. The ABO blood group system: historical background. Transfus Med 2001;11(4):243–65. 链接1

[ 2 ] Olsson ML, Clausen H. Modifying the red cell surface: towards an ABOuniversal blood supply. Br J Haematol 2008;140(1):3–12. 链接1

[ 3 ] Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons GJ, Darvill A, et al. Transforming glycoscience: a roadmap for the future. Washington DC: National Academies Press; 2012. 链接1

[ 4 ] Dennis JW, Laferté S, Waghorne C, Breitman ML, Kerbel RS. Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987;236(4801):582–5. 链接1

[ 5 ] Przybyło M, Pochec´ E, Link-Lenczowski P, Lityn´ ska A. Beta1–6 branching of cell surface glycoproteins may contribute to uveal melanoma progression by upregulating cell motility. Mol Vis 2008;14:625–66. 链接1

[ 6 ] Taniguchi N, Kizuka Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 2015;126:11–51. 链接1

[ 7 ] Mechref Y, Muzikar J, Novotny MV. Comprehensive assessment of N-glycans derived from a murine monoclonal antibody: a case for multimethodological approach. Electrophoresis 2005;26(10):2034–46. 链接1

[ 8 ] Mitra I, Zhuang Z, Zhang Y, Yu CY, Hammoud ZT, Tang H, et al. N-glycan profiling by microchip electrophoresis to differentiate disease states related to esophageal adenocarcinoma. Anal Chem 2012;84(8):3621–7. 链接1

[ 9 ] Gennaro LA, Salas-Solano O. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 2008;80(10):3838–45. 链接1

[10] Cajic S, Hennig R, Burock R, Rapp E. Capillary (gel) electrophoresis-based methods for immunoglobulin (G) glycosylation analysis. In: Pezer M, editor. Antibody glycosylation. Experientia supplementum, vol. 112. Cham: Springer; 2021. p. 137–72. 链接1

[11] Pabst M, Kolarich D, Pöltl G, Dalik T, Lubec G, Hofinger A, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 2009;384(2):263–73. 链接1

[12] Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 2010;397(8):3457–81. 链接1

[13] Carpino LA. The 9-fluorenylmethyloxycarbonyl family of base-sensitive amino-protecting groups. Acc Chem Res 1987;20(11):401–7. 链接1

[14] Kajihara Y, Suzuki Y, Sasaki K, Juneja LR. Chemoenzymatic synthesis of diverse asparagine-linked oligosaccharides. Methods Enzymol 2003;362:44–64. 链接1

[15] Song X, Lasanajak Y, Rivera-Marrero C, Luyai A, Willard M, Smith DF, et al. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal Biochem 2009;395(2):151–60. 链接1

[16] Trbojevic´ -Akmacˇic´ I, Lageveen-Kammeijer GSM, Heijs B, Petrovic´ T, Deriš H, Wuhrer M, et al. High-throughput glycomic methods. Chem Rev 2022;122 (20):15865–913. 链接1

[17] Ceroni A, Dell A, Haslam SM. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures. Source Code Biol Med 2007;2:3. 链接1

[18] Damerell D, Ceroni A, Maass K, Ranzinger R, Dell A, Haslam SM. The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol Chem 2012;393:1357–62. 链接1

[19] Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 2015;25:1323–4. 链接1

[20] Hennig R, Rapp E, Kottler R, Cajic S, Borowiak M, Reichl U. N-glycosylation fingerprinting of viral glycoproteins by xCGE-LIF. In: Lepenies B, editor. Carbohydrate-based vaccines. Methods in molecular biology. New York City: Humana Press; 2015. p. 123–43. 链接1

[21] Hennig R, Cajic S, Borowiak M, Hoffmann M, Kottler R, Reichl U, et al. Towards personalized diagnostics via longitudinal study of the human plasma Nglycome. Biochim Biophys Acta 2016;1860(8):1728–38. 链接1

[22] Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkagespecific sialic acid esterification. Anal Chem 2014;86(12):5784–93. 链接1

[23] Reiding KR, Lonardi E, Hipgrave Ederveen AL, Wuhrer M. Ethyl esterification for MALDI-MS analysis of protein glycosylation. In: Reinders J, editor. Proteomics in systems biology. Methods in molecular biology. New York City: Humana Press; 2016. p. 151–62. 链接1

[24] Dionex. Direct determination of sialic acids in glycoprotein hydrolyzates by HPAE-PAD. Application update 180 2011:LPN 2831 [Internet]. Thermo Fisher Scientific Inc., c2016 [cited 2021 Sep 22]. Available from: https://assets. thermofisher.com/TFS-Assets/CMD/Application-Notes/AU-180-IC-Sialic-AcidsGlycoprotein-Hydrolyzates-AU71730-EN.pdf.

[25] Varki A, Diaz S. The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal Biochem 1984;137(1):236–47. 链接1

[26] Martin LT, Verhagen A, Varki A. Recombinant influenza C hemagglutininesterase as a probe for sialic acid 9-O-acetylation. Methods Enzymol 2003;363:489–98. 链接1

[27] Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, et al. Glycomic characterization of induced pluripotent stem cells derived from a patient suffering from phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG). Mol Cell Proteomics 2016;15 (4):1435–52. 链接1

[28] Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, et al. Quantitative assessment of sialo-glycoproteins and N-glycans during cardiomyogenic differentiation of human induced pluripotent stem cells. Chembiochem 2017;18(13):1317–31. 链接1

[29] Suzuki H, Müller O, Guttman A, Karger BL. Analysis of 1-aminopyrene-3,6,8- trisulfonate-derivatized oligosaccharides by capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 1997;69(22):4554–9. 链接1

[30] Lemoine J, Cabanes-Macheteau M, Bardor M, Michalski JC, Faye L, Lerouge P. Analysis of 8-aminonaphthalene-1,3,6-trisulfonic acid labelled N-glycans by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2000;14(2):100–4. 链接1

[31] Guttman A, Chen FTA, Evangelista RA. Separation of 1-aminopyrene-3,6,8- trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis. Electrophoresis 1996;17(2):412–7. 链接1

[32] Laroy W, Contreras R, Callewaert N. Glycome mapping on DNA sequencing equipment. Nat Protoc 2006;1(1):397–405. 链接1

[33] Nakano M, Higo D, Arai E, Nakagawa T, Kakehi K, Taniguchi N, et al. Capillary electrophoresis-electrospray ionization mass spectrometry for rapid and sensitive N-glycan analysis of glycoproteins as 9-fluorenylmethyl derivatives. Glycobiology 2009;19(2):135–43. 链接1

[34] Wang C, Qiang S, Jin W, Song X, Zhang Y, Huang L, et al. Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9- fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis. J Proteomics 2018;187:47–58. 链接1

[35] Kamoda S, Nakano M, Ishikawa R, Suzuki S, Kakehi K. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography: a method which can recover free oligosaccharides after analysis. J Proteome Res 2005;4(1):146–52. 链接1

[36] Tarentino AL, Plummer Jr TH. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from flavobacterium meningosepticum. Methods Enzymol 1994;230:44–57. 链接1

[37] Ruhaak LR, Hennig R, Huhn C, Borowiak M, Dolhain RJEM, Deelder AM, et al. Optimized workflow for preparation of APTS-labeled N-glycans allowing highthroughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J Proteome Res 2010;9(12):6655–64. 链接1

[38] Rasmussen JR, Davis J, Risley JM, Van Etten RL. Identification and derivatization of (oligosaccharyl)amines obtained by treatment of asparagine-linked glycopeptides with N-glycanase enzyme. J Am Chem Soc 1992;114(3):1124–6. 链接1

[39] Likhosherstov LM, Novikova OS, Derevitskaja VA, Kochetkov NK. A new simple synthesis of amino sugar b-D-glycosylamines. Carbohydr Res 1986;146(1): C1–5. 链接1

[40] Küster B, Harvey DJ. Ammonium containing buffers should be avoided during enzymatic release of glycans from glycoproteins when followed by reducing terminal derivatization. Glycobiology 1997;7(2):7–9. 链接1

[41] Kallin E, Lönn H, Norberg T, Elofsson M. Derivatization procedures for reducing oligosaccharides, part 3: preparation of oligosaccharide glycosylamines, and their conversion into glycosaccharide—acrylamide copolymers. J Carbohydr Chem 1989;8(4):597–611. 链接1

[42] Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 1995;230(2):229–38. 链接1

[43] Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 2015;87(10):5401–9. 链接1

[44] Stöckmann H, Duke RM, Millán Martín S, Rudd PM. Ultrahigh throughput, ultrafiltration-based N-glycomics platform for ultraperformance liquid chromatography (ULTRA(3)). Anal Chem 2015;87(16):8316–22. 链接1

[45] Kimzey M, Szabo Z, Sharma V, Gyenes A, Tep S, Taylor A, et al. Development of an instant glycan labeling dye for high throughput analysis by mass spectrometry. Prozyme 2015;25:1295. 链接1

[46] Cook KS, Bullock K, Sullivan T. Development and qualification of an antibody rapid deglycosylation method. Biologicals 2012;40(2):109–17. 链接1

[47] Fields GB. Methods for removing the Fmoc group. Peptide synthesis protocols. New Jersey: Humana Press; 1994. 链接1

[48] Endo T, Nishimura R, Kawano T, Mochizuki M, Kobata A. Structural differences found in the asparagine-linked sugar chains of human chorionic gonadotropins purified from the urine of patients with invasive mole and with choriocarcinoma. Cancer Res 1987;47(19):5242–5. 链接1

[49] Yamashita K, Totani K, Iwaki Y, Takamisawa I, Tateishi N, Higashi T, et al. Comparative study of the sugar chains of c-glutamyltranspeptidases purified from human hepatocellular carcinoma and from human liver. J Biochem 1989;105(5):728–35. 链接1

[50] Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999;1473(1):21–34. 链接1

[51] Goss PE, Baker MA, Carver JP, Dennis JW. Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin Cancer Res 1995;1 (9):935–44. 链接1

[52] Harvey DJ, Wing DR, Küster B, Wilson IBH. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J Am Soc Mass Spectrom 2000;11(6):564–71. 链接1

[53] Tai T, Yamashita K, Ogata-Arakawa M, Koide N, Muramatsu T, Iwashita S, et al. Structural studies of two ovalbumin glycopeptides in relation to the endo-b-Nacetylglucosaminidase specificity. J Biol Chem 1975;250(21):8569–75. 链接1

[54] Yamashita K, Tachibana Y, Kobata A. The structures of the galactose-containing sugar chains of ovalbumin. J Biol Chem 1978;253(11):3862–9. 链接1

[55] Yoshima H, Takasaki S, Kobata A. The asparagine-linked sugar chains of the glycoproteins in calf thymocyte plasma membrane. J Biol Chem 1980;255 (22):10793–804. 链接1

[56] Kajihara Y, Suzuki Y, Yamamoto N, Sasaki K, Sakakibara T, Juneja LR. Prompt chemoenzymatic synthesis of diverse complex-type oligosaccharides and its application to the solid-phase synthesis of a glycopeptide with Asn-linked sialyl-undeca- and asialo-nonasaccharides. Chemistry 2004;10(4):971–85. 链接1

[57] Duffin KL, Welply JK, Huang E, Henion JD, Huang E, Henion JD. Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 1992;64(13):1440–8. 链接1

[58] Mechref Y, Novotny MV. Mass spectrometric mapping and sequencing of Nlinked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal Chem 1998;70(3):455–63. 链接1

[59] Nomoto H, Inoue Y. A novel glycoasparagine isolated from an ovalbumin glycopeptide fraction (GP-IV). Eur J Biochem 1983;135(2):243–50. 链接1

[60] Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 1982;40:131–234. 链接1

[61] Klein A, Roussel P. O-acetylation of sialic acids. Biochimie 1998;80(1):49–57. 链接1

[62] Varki A. Diversity in the sialic acids. Glycobiology 1992;2(1):25–40. 链接1

[63] Mandal C, Schwartz-Albiez R, Vlasak R. Functions and biosynthesis of Oacetylated sialic acids. Top Curr Chem 2015;366:1–30. 链接1

[64] Liu X, Afonso L. Is permethylation strategy always applicable to protein Nglycosylation study? A case study on the O-acetylation of sialic acid in fish serum glycans. In: Li J, editor. Functional glycomics. Methods in molecular biology. New Jersey: Humana Press; 2010. p. 259–68. 链接1

[65] Liu X, Qiu H, Lee RK, Chen W, Li J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both a2,3- and a2,6-linked sialic acids. Anal Chem 2010;82(19):8300–6. 链接1

[66] Varki A. Biological roles of glycans. Glycobiology 2017;27(1):3–49. 链接1

[67] Neuberger A, Ratcliffe WA. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm-Horsfall glycoprotein. Biochem J 1972;129(3):683–93. 链接1

[68] Schauer R, Veh RW, Sander M, Corfield AP, Wiegandt H. ‘‘Neuraminidaseresistant” sialic acid residues of gangliosides. In: Svennerholm L, Mandel P, Dreyfus H, Urban PF, editors. Structure and function of gangliosides. Advances in experimental medicine and biology. Boston: Springer; 1980. p. 283–94. 链接1

[69] Pepper DS. The sialic acids of horse serum with special reference to their virus inhibitory properties. Biochim Biophys Acta 1968;156(2):317–26. 链接1

[70] Spik G, Coddeville B, Montreuil J. Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie 1988;70(11):1459–69. 链接1

[71] Coddeville B, Stratil A, Wieruszeski JM, Strecker G, Montreuil J, Spik G. Primary structure of horse serotransferrin glycans. Eur J Biochem 1989;186(3):583–90. 链接1

[72] Damm JBL, Voshol H, Hård K, Kamerling JP, Vliegenthart JFG. Analysis of Nacetyl-4-O-acetylneuraminic-acid-containing N-linked carbohydrate chains released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Eur J Biochem 1989;180(1):101–10. 链接1

[73] Miura Y, Endo T. Glycomics and glycoproteomics focused on aging and agerelated diseases—glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta 2016;1860(8):1608–14. 链接1

[74] Reiding KR, Bondt A, Hennig R, Gardner RA, O’Flaherty R, Trbojevic´ -Akmacˇic´ I, et al. High-throughput serum N-glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol Cell Proteomics 2019;18(1):3–15. 链接1

[75] Keser T, Gornik I, Vucˇkovic´ F, Selak N, Pavic´ T, Lukic´ E, et al. Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. Diabetologia 2017;60(12):2352–60. 链接1

[76] Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. Nglycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology 2007;46(5):1426–35. 链接1

[77] Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019;57(4):407–16. 链接1

[78] Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015;15(9):540–55. 链接1

[79] Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J 2018;35(2):139–60. 链接1

[80] Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol 2019;15(6):346–66. 链接1

[81] Spik G, Coddeville B, Strecker G, Montreuil J, Regoeczi E, Chindemi PA, et al. Carbohydrate microheterogeneity of rat serotransferrin. Eur J Biochem 1991;195(2):397–405. 链接1

[82] Coddeville B, Regoeczi E, Strecker G, Plancke Y, Spik G. Structural analysis of trisialylated biantennary glycans isolated from mouse serum transferrin. Biochim Biophys Acta 2000;1475(3):321–8. 链接1

[83] De Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin Nand O-glycosylation in health and disease. Glycobiology 2020;30(4): 226–40. 链接1

[84] Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018;333:65–79. 链接1

[85] Bondt A, Nicolardi S, Jansen BC, Kuijper TM, Hazes JMW, van der Burgt YEM, et al. IgA N- and O-glycosylation profiling reveals no association with the pregnancy-related improvement in rheumatoid arthritis. Arthritis Res Ther 2017;19(1):160. 链接1

[86] Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2016;33(3):309–43. 链接1

[87] Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, et al. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021;20(1):162. 链接1

[88] Jiang H, Irungu J, Desaire H. Enhanced detection of sulfated glycosylation sites in glycoproteins. J Am Soc Mass Spectrom 2005;16(3):340–8. 链接1

[89] Kawashima H. Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull 2006;29(12):2343–9. 链接1

[90] Muthana SM, Campbell CT, Gildersleeve JC. Modifications of glycans: biological significance and therapeutic opportunities. ACS Chem Biol 2012;7 (1):31–43. 链接1

[91] Zauner G, Selman MHJ, Bondt A, Rombouts Y, Blank D, Deelder AM, et al. Glycoproteomic analysis of antibodies. Mol Cell Proteomics 2013;12 (4):856–65. 链接1

[92] Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, et al. A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat Commun 2017;8(1):631. 链接1

[93] Lauc G, Vucˇkovic´ F, Bondt A, Pezer M, Wuhrer M. Trace N-glycans including sulphated species may originate from various plasma glycoproteins and not necessarily IgG. Nat Commun 2018;9(1):2916. 链接1

[94] Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, et al. Reply to ‘‘trace N-glycans including sulphated species may originate from various plasma glycoproteins and not necessarily IgG”. Nat Commun 2018;9(1):2915. 链接1

相关研究