资源类型

期刊论文 742

年份

2024 39

2023 81

2022 61

2021 50

2020 44

2019 42

2018 39

2017 48

2016 30

2015 24

2014 27

2013 18

2012 20

2011 25

2010 31

2009 27

2008 37

2007 30

2006 18

2005 10

展开 ︾

关键词

疲劳 6

疲劳寿命 4

S-N曲线 3

飞机结构 3

三点弯曲梁 2

优化 2

元胞自动机模型 2

固体氧化物燃料电池 2

性能化 2

效果评估 2

整体穿刺 2

目标识别 2

腐蚀 2

裂缝 2

1860 MPa等级 1

300 M钢 1

4250 m 1

9 %~12 % Cr 钢 1

&prime 1

展开 ︾

检索范围:

排序: 展示方式:

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Fatigue crack growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combinedtorsion and bending load

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 905-913 doi: 10.1007/s11709-021-0683-2

摘要: In a nuclear powerplant, the rotary equipment, such as a pump directly fitted with hanger in the piping system, experiences torsional and bending loads. Higher crack growth rate occurs because of this torsional load in addition to the bending load. Hence, it is necessary to study the fatigue behavior of piping components under the influence of combined torsional and bending load. In this study, experimental fatigue life evaluation was conducted on a notched stainless steel SA312 Type 304LN straight pipe having an outer diameter of 170 mm. The experimental crack depth was measured using alternating current potential drop technique. The fatigue life of the stainless steel straight pipe was predicted using experiments, Delale and Erdogan method, and area-averaged root mean square–stress intensity factor approach at the deepest and surface points of the notch. Afterward, the fatigue crack growth and crack pattern were discussed. As a result, fatigue crack growth predicted using analytical methods are in good agreement with experimental results.

关键词: fatigue life     Delale and Erdogan method     RMS–SIF approach     stainless steel     torsion and bending load     fatigue crack growth    

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 990-997 doi: 10.1007/s11709-019-0532-8

摘要: This paper proposes a new type of steel-concrete composite deck, which is composed of orthotropic steel deck (OSD) with T-shaped ribs, concrete plate and studs connecting OSD and concrete plate. The OSD can act as framework for concrete plate and contribute to load bearing capacity at the same time, which could save construction time. Compared with conventional OSD system, this new type of composite bridge deck can also improve fatigue performance. Considering that this type of composite deck is not yet applied in practical engineering and its mechanical performance is not revealed in previous literatures, two full-scale specimens were designed and manufactured in this research. The mechanical performance, particularly, bending capacity in positive and negative region was carefully tested and analyzed. The load-deflection curve, load-slip relation, strain distribution in concrete and steel were obtained. The test results showed that the plastic performance of this kind of composite bridge deck was satisfying and the bending capacity was high.

关键词: bending performance     composite bridge deck     T-shaped steel ribs    

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 257-269 doi: 10.1007/s11709-017-0410-1

摘要: In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.

关键词: fatigue cracking     energy based     crack initiation     mechanistic approach     pavement analysis    

Degree of bending of concrete-filled rectangular hollow section K-joints under balanced-axial loadings

Rui ZHAO; Yongjian LIU; Lei JIANG; Yisheng FU; Yadong ZHAO; Xindong ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第4期   页码 461-477 doi: 10.1007/s11709-022-0818-0

摘要: It has been found that the fatigue life of tubular joints is not only determined by the hot spot stress, but also by the stress distribution through the tube thickness represented as the degree of bending (DoB). Consequently, the DoB value should be determined to improve the accuracy of fatigue assessment for both stress-life curve and fracture mechanics methods. Currently, no DoB parametric formula is available for concrete-filled rectangular hollow section (CFRHS) K-joints, despite their wide use in bridge engineering. Therefore, a robust finite element (FE) analysis was carried out to calculate the DoB of CFRHS K-joints under balanced-axial loading. The FE model was developed and verified against a test result to ensure accuracy. A comprehensive parametric study including 190 models, was conducted to establish the relationships between the DoBs and four specific variables. Based on the numerical results, design equations to predict DoBs for CFRHS K-joints were proposed through multiple regression analysis. A reduction of 37.17% was discovered in the DoB, resulting in a decrease of 66.85% in the fatigue life. Inclusively, the CFRHS K-joints with same hot spot stresses, may have completely different fatigue lives due to the different DoBs.

关键词: fatigue assessment     K-joint     design equations     degree of bending     fracture mechanics    

Calculation of diagonal section and cross-section bending capacity for strengthening RC structure usinghigh-performance ferrocement laminate

Shouping SHANG , Fangyuan ZHOU , Wei LIU ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 330-338 doi: 10.1007/s11709-009-0046-x

摘要: Because there is a great demand of reinforcement and retrofitting of aged structures nationwide, as well as the rapid development of innovative building materials, the adoption of strengthening RC structures using new inorganic materials has become possible. High-performance ferrocement laminate (HPFL) is an effective method of strengthening concrete structure. High-performance ferrocement laminate is a new type of inorganic material with the advantages such as high strength, small contraction, good bonding properties, etc. This paper introduces the formula of cross-section bending capacity for strengthening concrete beams with HPEL. A comparative analysis of experimental data, as well as the calculation of diagonal section bearing capacity of concrete members, is given.

关键词: RC beams     high-performance ferrocement laminate (HPFL)     inorganic material     reinforcement    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

南京长江第四大桥钢桥面铺装疲劳性能试验研究

詹俞,李国芬,王宏畅

《中国工程科学》 2013年 第15卷 第8期   页码 75-78

摘要:

结合南京长江第四大桥钢桥面铺装实体工程,开展铺装层混合料20 ℃疲劳性能试验。为了使试验结果能够更真实地反映主桥铺装的实际情况,直接采用主桥铺装使用的混合料成型试件,其中,带钢板复合梁试件为施工现场摊铺、碾压成型。室内试验对铺装结构单层采用劈裂疲劳试验,选择0.2、0.3、0.4、0.5、0.6这5个等级的应力水平,对组合结构采用带钢板复合梁疲劳试验,荷载水平为6 kN、7 kN、8 kN,并通过回归分析得到疲劳方程。

关键词: 道路工程     钢桥面铺装     疲劳性能     劈裂疲劳     疲劳方程    

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

《结构与土木工程前沿(英文)》 2023年 第17卷 第7期   页码 1033-1046 doi: 10.1007/s11709-023-0973-y

摘要: This study focuses on the bending failure performance of a shield tunnel segment. A full-scale test was conducted to investigate deformation and failure characteristics. During the loading, the bending failure process can be divided into four stages: the elastic stage, working stage with cracks, failure stage, and ultimate stage. The characteristic loads between contiguous stages are the cracking, failure, and ultimate loads. A numerical model corresponding to the test was established using the elastoplastic damage constitutive model of concrete. After a comparative analysis of the simulation and test results, parametric studies were performed to discuss the influence of the reinforcement ratio and proportion of tensile longitudinal reinforcement on the bearing capacity. The results indicated that the change in the reinforcement ratio and the proportion of tensile longitudinal reinforcement had little effect on the cracking load but significantly influenced the failure and ultimate loads of the segment. It is suggested that in the reinforcement design of the subway segment, the reinforcement ratio and the proportion of tensile longitudinal reinforcement can be chosen in the range of 0.7%–1.2% and 49%–55%, respectively, allowing the segment to effectively use the reinforcement and exert the design strength, thereby improving the bearing capacity of the segment.

关键词: shield tunnel     bearing capacity     failure mechanism     segment reinforcement    

Experimental and parametrical investigation of pre-stressed ultrahigh-performance fiber-reinforced concrete

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 411-428 doi: 10.1007/s11709-023-0928-3

摘要: In this study, ultrahigh-performance fiber-reinforced concrete (UHPFRC) used in a type B70 concrete sleeper is investigated experimentally and parametrically. The main parameters investigated are the steel fiber volume fractions (0%, 0.5%, 1%, and 1.5%). Under European standards, 35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections, and the screw on the fastening system is pulled out. The first cracking load, failure load, failure mode, crack propagation, load–deflection curve, load–crack width, and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50. The accuracy of the parametric study is verified experimentally. Subsequently, the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance. Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased. Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1% and a concrete volume less than 25% that of standard sleeper B70 can be used under the same loads and requirements, which contributes positively to the cost and surrounding environment.

关键词: pre-stressed concrete sleeper     ultrahigh performance fiber-reinforced concrete     pull-out test     static bending test     steel fiber     aspect ratio     volume fraction    

Research on an innovative structure of an open-ribbed steel–ultra-high performance concrete composite

《结构与土木工程前沿(英文)》 2024年 第18卷 第5期   页码 716-730 doi: 10.1007/s11709-024-1053-7

摘要: To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks (OSDs), the authors proposed a steel–ultra-high performance concrete (UHPC) lightweight composite deck (LWCD) with closed ribs in 2010. Based on the successful application of that LWCD, an adaptation incorporating an innovative composite deck structure, i.e., the hot-rolled section steel–UHPC composite deck with open ribs (SSD) is proposed in this paper, aiming to simplify the fabrication process as well as to reduce the cost of LWCD. Based on a long-span cable-stayed bridge, a design scheme is proposed and is compared with the conventional OSD scheme. Further, a finite element (FE) calculation is conducted to reflect both the global and local behavior of the SSD scheme, and it is found that the peaked stresses in the SSD components are less than the corresponding allowable values. A static test is performed for an SSD strip specimen to understand the anti-cracking behavior of the UHPC layer under negative bending moments. The static test results indicate that the UHPC layer exhibited a satisfactory tensile toughness, the UHPC tensile strength obtained from the test is 1.8 times the calculated stress by the FE model of the real bridge. In addition, the fatigue stresses of typical fatigue-prone details in the SSD are calculated and evaluated, and the influences of key design parameters on the fatigue performance of the SSD are analyzed. According to the fatigue results, the peaked stress ranges for all of the 10 fatigue-prone details are within the corresponding constant amplitude fatigue limits. Then a fatigue test is carried out for another SSD strip specimen to explore the fatigue behavior of the fillet weld between the longitudinal and transverse ribs. The specimen failed at the fillet weld after equivalent 47.5 million cycles of loading under the design fatigue stress range, indicating that the fatigue performance of the SSD could meet the fatigue design requirement. Theoretical calculations and experiments provide a basis for the promotion and application of this structure in bridge engineering.

关键词: steel–ultra-high performance concrete composite deck     open rib     strip model test     static and fatigue performance     orthotropic steel deck    

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 536-547 doi: 10.1007/s11709-017-0451-5

摘要: Temperature segregation is non-uniform temperature distributionacross the uncompacted asphalt mat during paving operations and mayhave detrimental effects on the quality and performance of asphaltpavements. However, many research studies conducted across the UShave reported mixed observations regarding its effects on the initialquality and long-term performance of asphalt pavements.?The objectiveof this study was to determine the effects of the temperature segregationon the density and mechanical properties of Louisiana asphalt mixtures.Seven asphalt rehabilitation projects across Louisiana were selected.A multi-sensor infrared bar (Pave-IR) system and a hand-held portablethermal camera were used to measure the temperature of asphalt mats.Field core samples were collected from various areas with varyingseverity levels of temperature segregation and tested for the density,fracture resistance (J ) by semi-circular bending(SCB), rut depth by wheel tracking, and dynamic modulus (|E*|) byindirect tension (IDT) devices.?Two distinctive patterns of non-uniformtemperature distribution were observed: a cyclic and irregular temperaturesegregations. Laboratory test results showed that highly temperaturesegregated asphalt pavements (i.e., temperature differentials ≥41.7°C) can have significantly lower densities and the mechanicalproperties than the non-segregated area, especially when the temperaturedifferentials are measured at compaction.

关键词: temperature segregation     temperature differential     pavement density     semi-circular bending     wheel tracking     dynamic modulus    

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 75-85 doi: 10.1007/s11709-021-0798-5

摘要: An efficient and meshfree approach is proposed for the bending analysis of thin plates. The approach is based on the choice of a set of interior points, for each of which a basis function can be defined. Plate deflection is then approximated as the linear combination of those basis functions. Unlike traditional meshless methods, present basis functions are defined in the whole domain and satisfy the governing differential equation for plate. Therefore, no domain integration is needed, while the unknown coefficients of deflection expression could be determined through boundary conditions by using a collocation point method. Both efficiency and accuracy of the approach are shown through numerical results of plates with arbitrary shapes and boundary conditions under various loads.

关键词: plate     bending     meshless method     collocation    

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

《结构与土木工程前沿(英文)》 2023年 第17卷 第7期   页码 1021-1032 doi: 10.1007/s11709-023-0952-3

摘要: In recent years, concrete and reinforced concrete piles have been widely used to stabilize soft ground under embankments. Previous research has shown that bending failure, particularly during rapid filling on soft ground, is the critical failure mode for pile-supported embankments. Here, we propose an efficient two-stage method that combines a test-verified soil deformation mechanism and Poulos’ solution for pile–soil interaction to investigate the bending behavior of piles supporting embankments on soft ground. The results reveal that there are three possible bending failure scenarios for such piles: at the interface between the soft and firm ground layers, at mid-depths of the fan zone, and at the boundary of the soil deformation mechanism. The location of the bending failure depends on the position and relative stiffness of the given pile. Furthermore, the effect of embedding a pile into a firm ground layer on the bending behavior was investigated. When the embedded length of a pile exceeded a critical value, the bending moment at the interface between the soft and firm ground layers reached a limiting value. In addition, floating piles that are not embedded exhibit an overturning pattern of movement in the soft ground layer, and a potential failure is located in the upper part of these piles.

关键词: bending behavior     pile     embankment     soil−structure interaction     failure mode    

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第11期   页码 1739-1759 doi: 10.1007/s11709-023-0961-2

摘要: Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases. Proper assessment is crucial in the initial design stages. This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations. Influential parameters (i.e., the excavation geometry, diaphragm wall thickness, pile geometry, strength and small-strain stiffness of the soil, and soft clay thickness) were considered and employed in the developed equations. It is practically unfeasible to obtain measurement data; hence, artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases, using the three-dimensional finite element method. The developed equations were established through a multiple linear regression analysis of the artificial data, using the transformation technique. In addition, the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect, using the plane strain ratio parameter. The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.

关键词: pile responses     excavation     prediction     deflection     bending moments    

标题 作者 时间 类型 操作

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Fatigue crack growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combinedtorsion and bending load

期刊论文

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

期刊论文

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

期刊论文

Degree of bending of concrete-filled rectangular hollow section K-joints under balanced-axial loadings

Rui ZHAO; Yongjian LIU; Lei JIANG; Yisheng FU; Yadong ZHAO; Xindong ZHAO

期刊论文

Calculation of diagonal section and cross-section bending capacity for strengthening RC structure usinghigh-performance ferrocement laminate

Shouping SHANG , Fangyuan ZHOU , Wei LIU ,

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

南京长江第四大桥钢桥面铺装疲劳性能试验研究

詹俞,李国芬,王宏畅

期刊论文

Bending failure performance of a shield tunnel segment based on full-scale test and numerical analysis

期刊论文

Experimental and parametrical investigation of pre-stressed ultrahigh-performance fiber-reinforced concrete

期刊论文

Research on an innovative structure of an open-ribbed steel–ultra-high performance concrete composite

期刊论文

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

期刊论文

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

期刊论文

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

期刊论文

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

期刊论文