资源类型

期刊论文 1677

年份

2024 3

2023 137

2022 160

2021 137

2020 142

2019 122

2018 102

2017 104

2016 75

2015 88

2014 53

2013 47

2012 37

2011 44

2010 49

2009 55

2008 59

2007 68

2006 52

2005 34

展开 ︾

关键词

遗传算法 9

优化 7

神经网络 7

可持续发展 5

多目标优化 4

机器学习 4

目标识别 4

预测 4

BP神经网络 3

COVID-19 3

算法 3

CAN总线 2

Cu(In 2

GIS 2

GPS 2

HY-2 2

TMS320DM642 2

Weibull分布 2

展开 ︾

检索范围:

排序: 展示方式:

Development of lunar regolith-based composite for - 3D printing via high-pressure extrusion system

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0745-8

摘要: To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future. Thus, intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction. However, the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time. In this work, we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing, and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite. The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions. The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith. Mechanical properties such as tensile strength, elastic modulus, and Poisson’s ratio of the printed specimens were evaluated systematically. Especially, the impact performance was emphasized to improve the resistance of the meteorite impact on the moon. The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2, respectively. High-pressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing.

关键词: in-situ resource utilization     melt extrusion molding     lunar regolith-based composites     mechanical properties     additive manufacturing    

Printability and hardening performance of three-dimensionally-printed geopolymer based on lunar regolithsimulant for automated construction of lunar infrastructure

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0003-0

摘要: Using an in situ lunar regolith as a construction material in combination with 3D printing not only reduces the weight of materials carried from the Earth but also improves the automation of lunar infrastructure construction. This study aims to improve the printability of a geopolymer based on a BH-1 lunar regolith simulant, including the extrudability, open time, and buildability, by controlling the temperature and adding admixtures. Rheological parameters were used to represent printability with different water-to-binder ratios, printing temperatures, and contents of additives. The mechanical properties of the hardening geopolymer with different filling paths and loading directions were tested. The results show that heating the printed filaments with a water-to-binder ratio of 0.32 at 80 °C can adjust the printability without adding any additive, which can reduce the construction cost of lunar infrastructure. The printability of the BH-1 geopolymer can also be improved by adding 0.3% Attagel-50 and 0.5% polypropylene fiber by mass at a temperature of 20 °C to cope with the changeable environmental conditions on the Moon. After curing under a simulated lunar environment, the 72-h flexural and compressive strengths of the geopolymer specimens reach 4.1 and 48.1 MPa, respectively, which are promising considering that the acceleration of gravity on the Moon is 1/6 of that on the Earth.

关键词: geopolymer     lunar regolith simulant     3D printing     rheology     printability    

Development of lunar regolith composite and structure via laser-assisted sintering

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0662-2

摘要: Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

关键词: in situ manufacturing     laser-assisted powder fusion process     mechanical properties     topological structure design    

嫦娥1号卫星微波探月技术机理和应用研究

姜景山,王振占,李芸

《中国工程科学》 2008年 第10卷 第6期   页码 16-22

摘要:

微波探测仪是嫦娥1号卫星有效载荷之一,主要用于测量不同深度的月壤微波辐射亮温,进而反演月壤厚度的信息并对月球的3He资源量和分布进行评估。这是国际上第一次利用被动微波遥感探测器在月球轨道直接测量月表亮温信息。因此,对月壤辐射传输模型的研究是及其必要的。文章分析了月球微波探测的机理和存在的问题,并给出了初步解决途径。

关键词: 嫦娥1号微波探测仪     遥感     月壤     微波辐射传输    

Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive

Qingsheng YANG, Fang XU

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 284-288 doi: 10.1007/s11465-009-0067-0

摘要: Fiber reinforced polymer (FRP) composites exhibit nonlinear and hyperelastic characteristics under finite deformation. This paper investigates the macroscopic hyperelastic behavior of fiber reinforced polymer composites using a micromechanical model and finite deformation theory based on the hyperelastic constitutive law. The local stress and deformation of a representative volume element are calculated by the nonlinear finite element method. Then, an averaging procedure is used to find the homogenized stress and strain, and the macroscopic stress-strain curves are obtained. Numerical examples are given to demonstrate hyperelastic behavior and deformation of the composites, and the effects of the distribution pattern of fibers are also investigated to model the mechanical behavior of FRP composites.

关键词: composites     hyperelastic     finite deformation     homogenization     micromechanics    

基于BH-1模拟月壤的低碱高强地聚合物的制备与表征 Article

周思齐, 鲁乘鸿, 朱兴一, 李峰

《工程(英文)》 2021年 第7卷 第11期   页码 1631-1645 doi: 10.1016/j.eng.2020.10.016

摘要:

建设月球基地以支持月面科研任务和资源利用一直是各国研究人员的目标。使用月球材料进行原位资源利用制备建筑材料对于节省昂贵的太空运费具有重要意义。本文研制了一种新型模拟月壤,名为北航(BH)-1。通过X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电子显微镜(SEM)和反射光谱结果证实,BH-1 的化学矿物组成和微观结构与真实月壤非常相似。本研究还在模拟月球环境条件下合成了一种基于BH-1 模拟月壤的地聚合物,并研究了补充铝源对地聚合物强度的影响。测定了碱激发BH-1 浆体的流变性能。采用XRF、XRD、傅里叶红外光谱、SEM能谱分析和27Al 魔角旋转核磁共振分析对地聚合物进行表征。试验结果表明,BH-1 浆体的流变曲线符合Herschel-Bulkley 模型,表现为剪切变稀流体。添加铝源的BH-1 地聚合物与对照组相比,28 天抗压强度可提高100.8%。同时,产生单位强度所需的添加剂的质量降低,显著减少了从地球运输至月球用于地聚合物制备的材料质量,有望节约太空运输成本。微观实验分析表明,通过添加额外的铝源来改善BH-1 地聚合物的力学性能机理为:促进了硅氧基中铝原子基团对硅原子基团的取代作用,生成更致密的无定形凝胶结构。

关键词: 深空探测     月球基地     地聚合物     模拟月壤     流变学    

Optimization of the mechanical performance and damage failure characteristics of laminated compositesbased on fiber orientation

《结构与土木工程前沿(英文)》   页码 1357-1369 doi: 10.1007/s11709-023-0996-4

摘要: In this study, the effect of fiber angle on the tensile load-bearing performance and damage failure characteristics of glass composite laminates was investigated experimentally, analytically, and numerically. The glass fabric in the laminate was perfectly aligned along the load direction (i.e., at 0°), offset at angles of 30° and 45°, or mixed in different directions (i.e., 0°/30° or 0°/45°). The composite laminates were fabricated using vacuum-assisted resin molding. The influence of fiber orientation angle on the mechanical properties and stiffness degradation of the laminates was studied via cyclic tensile strength tests. Furthermore, simulations have been conducted using finite element analysis and analytical approaches to evaluate the influence of fiber orientation on the mechanical performance of glass laminates. Experimental testing revealed that, although the composite laminates laid along the 0° direction exhibited the highest stiffness and strength, their structural performance deteriorated rapidly. We also determined that increasing the fiber offset angle (i.e., 30°) could optimize the mechanical properties and damage failure characteristics of glass laminates. The results of the numerical and analytical approaches demonstrated their ability to capture the mechanical behavior and damage failure modes of composite laminates with different fiber orientations, which may be used to prevent the catastrophic failures that occur in composite laminates.

关键词: fiber orientation     composite laminates     stiffness degradation     analytical approaches     finite element analysis    

Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1346-6

摘要:

•Wood and its reassemblies are ideal substrates to develop novel photocatalysts.

关键词: Wood     Nanocatalysts     Photodegradation     Organic contaminants     Composites    

生物基全降解复合材料

刘小刚,王莉,李十中,樊琛语

《中国工程科学》 2011年 第13卷 第2期   页码 90-95

摘要:

淀粉/聚乳酸复合具有相对较好的力学性能和生物降解性能,价格也与石油基塑料最为接近,是极具应用前景的全生物降解塑性材料。在分析国内外聚乳酸、淀粉及其复合材料研究现状的基础上,对该类材料的技术发展方向和工业化前景进行了展望。

关键词: 研究进展     生物基材料     降解     淀粉     聚乳酸    

天基发射与载人登月初探

张泽明,姜毅,傅德彬

《中国工程科学》 2006年 第8卷 第10期   页码 37-41

摘要:

登月是载人航天向深空探测的延续,它与载人飞船工程相比,可靠性要求更高,工程规模更大,资金投入更多。结合国外登月历程和我国航天事业取得的重大成就,探讨了利用现有运载技术,分批次将登月飞船和航天员送入近地轨道,并在天基发射平台上进行组装发射,实现载人登月的设想;并就天基发射平台和天基发射方式进行了初步探讨。

关键词: 登月     天基发射     发射平台     登月轨道     技术途径    

Mixed mode properties of CNT reinforced composites using Arcan test rig

Jacob MUTHU

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 397-404 doi: 10.1007/s11709-015-0321-y

摘要: Composite materials reinforced with carbon nanotubes were mechanical tested using Arcan test rig under Mode-I, Mode-II and mixed mode loading conditions to obtain their fracture properties. The butterfly composite specimens were fabricated with 0.02, 0.05 and 0.1 wt % CNTs. The polyester/CNT composite was fabricated using VRTM (Vacuum Resin Transfer Molding) where the CNTs were first functionalised to reach an optimum properties. Arcan test rig was designed and fabricated to work with the Shimadzu testing machine. The results show that the functionalised CNTs have improved the fracture behavior by acting as bridge between the cracked face. In addition, the fracture properties were not improved for the higher weight fraction of 0.1 wt% CNTs.

关键词: CNT     composites     Arcan test rig     stress intensity factor    

月球表面环境综合模拟系统的设想

石晓波,李运泽,黄勇,王浚

《中国工程科学》 2006年 第8卷 第11期   页码 48-52

摘要:

相比于环绕地球飞行的卫星或载人飞船,探月航天器面临的空间环境更为复杂和严酷。月球表面的环境对登月飞船、月球车的环境适应性及可靠性提出了极为严格的要求。文章就月球表面综合环境模拟系统进行了初步的系统设计。该系统可实现月表尘埃、地形地貌、承载能力及摩擦效应、真空、温度交替变化等环境因素的综合模拟,可为登月飞船及月球车的设计、优化以及最终的系统验证提供试验平台。

关键词: 月球表面环境     月球尘埃     环境模拟    

利用嫦娥一号卫星微波探测仪数据反演月球表面物理温度

李芸,姜景山,王振占,张德海,张晓辉

《中国工程科学》 2013年 第15卷 第7期   页码 106-112

摘要:

本文利用理论研究的结果,建立了月表物理温度反演模型,结合嫦娥一号微波探测仪(CELMS)数据对全月球物理温度进行了反演。同时分析了物理温度变化对微波辐射的影响及其与表面地形等的关系,为其他月表信息反演提供了依据和物理温度的测量信息。

关键词: 嫦娥一号微波探测仪     月球表面物理温度     反演    

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0680-8

摘要: Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

关键词: milling     grinding     fiber-reinforced composites     damage formation mechanism     delamination     material removal mechanism     surface integrity     minimum quantity lubrication    

Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 145-160 doi: 10.1007/s11709-022-0806-4

摘要: In this study, sprayable strain-hardening fiber-reinforced cementitious composites (FRCC) were applied to strengthen the concrete slabs in a concrete-face rockfill dam (CFRD) for the first time. Experimental, numerical, and analytical investigations were carried out to understand the flexural properties of FRCC-layered concrete slabs. It was found that the FRCC layer improved the flexural performance of concrete slabs significantly. The cracking and ultimate loads of a concrete slab with an 80 mm FRCC layer were 132% and 69% higher than those of the unstrengthened concrete slab, respectively. At the maximum crack width of 0.2 mm, the deflection of the 80-mm FRCC strengthened concrete slab was 144% higher than that of the unstrengthened concrete slab. In addition, a FE model and a simplified analytical method were developed for the design and analysis of FRCC-layered concrete slabs. Finally, the test result of FRCC leaching solution indicated that the quality of the water surrounding FRCC satisfied the standard for drinking water. The findings of this study indicate that the sprayable strain-hardening FRCC has a good potential for strengthening hydraulic structures such as CFRDs.

关键词: strain-hardening cementitious composites     engineered cementitious composites     sprayable     shotcrete     strengthening     concrete-face rockfill dam     digital image correlation    

标题 作者 时间 类型 操作

Development of lunar regolith-based composite for - 3D printing via high-pressure extrusion system

期刊论文

Printability and hardening performance of three-dimensionally-printed geopolymer based on lunar regolithsimulant for automated construction of lunar infrastructure

期刊论文

Development of lunar regolith composite and structure via laser-assisted sintering

期刊论文

嫦娥1号卫星微波探月技术机理和应用研究

姜景山,王振占,李芸

期刊论文

Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive

Qingsheng YANG, Fang XU

期刊论文

基于BH-1模拟月壤的低碱高强地聚合物的制备与表征

周思齐, 鲁乘鸿, 朱兴一, 李峰

期刊论文

Optimization of the mechanical performance and damage failure characteristics of laminated compositesbased on fiber orientation

期刊论文

Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic

期刊论文

生物基全降解复合材料

刘小刚,王莉,李十中,樊琛语

期刊论文

天基发射与载人登月初探

张泽明,姜毅,傅德彬

期刊论文

Mixed mode properties of CNT reinforced composites using Arcan test rig

Jacob MUTHU

期刊论文

月球表面环境综合模拟系统的设想

石晓波,李运泽,黄勇,王浚

期刊论文

利用嫦娥一号卫星微波探测仪数据反演月球表面物理温度

李芸,姜景山,王振占,张德海,张晓辉

期刊论文

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

期刊论文

Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites

期刊论文