资源类型

期刊论文 1023

年份

2023 69

2022 80

2021 66

2020 73

2019 56

2018 46

2017 45

2016 43

2015 55

2014 44

2013 40

2012 41

2011 39

2010 48

2009 45

2008 37

2007 39

2006 27

2005 26

2004 21

展开 ︾

关键词

数学模型 13

模型试验 9

数值模拟 8

模型 7

COVID-19 4

不确定性 4

GM(1 3

混凝土 3

计算机模拟 3

1)模型 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

k-ε模型 2

临震信号 2

云模型 2

展开 ︾

检索范围:

排序: 展示方式:

Isogeometric cohesive zone model for thin shell delamination analysis based on Kirchhoff-Love shell model

Tran Quoc THAI, Timon RABCZUK, Xiaoying ZHUANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 267-279 doi: 10.1007/s11709-019-0567-x

摘要: We present a cohesive zone model for delamination in thin shells and composite structures. The isogeometric (IGA) thin shell model is based on Kirchhoff-Love theory. Non-Uniform Rational B-Splines (NURBS) are used to discretize the exact mid-surface of the shell geometry exploiting their C -continuity property which avoids rotational degrees of freedom. The fracture process zone is modeled by interface elements with a cohesive law. Two numerical examples are presented to test and validate the proposed formulation in predicting the delamination behavior of composite structures.

关键词: cohesive zone model     IGA     Kirchhoff-Love model     thin shell analysis     delamination    

Cohesive zone model-based analyses of localized leakage of segmentally lined tunnels

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 503-521 doi: 10.1007/s11709-023-0927-4

摘要: This paper presents a novel approach for simulating the localized leakage behavior of segmentally lined tunnels based on a cohesive zone model. The proposed approach not only simulates localized leakage at the lining segment, but also captures the hydromechanically coupled seepage behavior at the segmental joints. It is first verified via a tunnel drainage experiment, which reveals its merits over the existing local hydraulic conductivity method. Subsequently, a parametric study is conducted to investigate the effects of the aperture size, stratum permeability, and spatial distribution of drainage holes on the leakage behavior, stratum seepage field, and leakage-induced mechanical response of the tunnel lining. The proposed approach yields more accurate results than the classical local hydraulic conductivity method. Moreover, it is both computationally efficient and stable. Localized leakage leads to reduced local ground pressure, which further induces outward deformation near the leakage point and slight inward deformation at its diametrically opposite side. A localized stress arch spanning across the leakage point is observed, which manifests as the rotation of the principal stresses in the adjacent area. The seepage field depends on both the number and location of the leakage zones. Pseudostatic seepage zones, in which the seepage rate is significantly lower than that of the adjacent area, appear when multiple seepage zones are considered. Finally, the importance of employing the hydromechanical coupled mechanism at the segment joints is highlighted by cases of shallowly buried tunnels subjected to surface loading and pressure tunnels while considering internal water pressure.

关键词: segmentally lined tunnel     localized leakage     cohesive element     hydraulic behavior     numerical modeling    

Simulation of cohesive crack growth by a variable-node XFEM

Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 215-228 doi: 10.1007/s11709-019-0595-6

摘要: A new computational approach that combines the extended finite element method associated with variable-node elements and cohesive zone model is developed. By using a new enriched technique based on sign function, the proposed model using 4-node quadrilateral elements can eliminate the blending element problem. It also allows modeling the equal stresses at both sides of the crack in the crack-tip as assumed in the cohesive model, and is able to simulate the arbitrary crack-tip location. The multiscale mesh technique associated with variable-node elements and the arc-length method further improve the efficiency of the developed approach. The performance and accuracy of the present approach are illustrated through numerical experiments considering both mode-I and mixed-mode fracture in concrete.

关键词: extended finite element method     cohesive zone model     sign function     crack propagation    

influence of delamination on the stiffness of composite pipes under compressive transverse loading using cohesivezone method

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1316-1323 doi: 10.1007/s11709-019-0555-1

摘要: The effect of delamination on the stiffness reduction of composite pipes is studied in this research. The stiffness test of filament wound composite pipes is simulated using cohesive zone method. The modeling is accomplished to study the effect of the geometrical parameters including delamination size and its position with respect to loading direction on stiffness of the composite pipes. At first, finite element results for stiffness test of a perfect pipe without delamination are validated with the experimental results according to ASTM D2412. It is seen that the finite element results agree well with experimental results. Then the finite element model is developed for composite pips with delaminated areas with different primary shapes. Thus, the effect of the size of delaminated region on longitudinal and tangential directions and also its orientation with respect to loading direction on delamination propagation and stiffness reduction of the pipes is assessed.

关键词: delamination     composite pipes     stiffness test     cohesive zone method    

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zonemodel

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 792-801 doi: 10.1007/s11709-020-0629-0

摘要: Finite element analysis is developed to simulate the breakage of capsule in capsule-based self-healing concrete. A 2D circular capsule with different core-shell thickness ratios embedded in the mortar matrix is analyzed numerically along with their interfacial transition zone. Zero-thickness cohesive elements are pre-inserted into solid elements to represent potential cracks. This study focuses on the effects of mismatch fracture properties, namely fracture strength and energy, between capsule and mortar matrix into the breakage likelihood of the capsule. The extensive simulations of 2D specimens under uniaxial tension were carried out to investigate the key features on the fracture patterns of the capsule and produce the fracture maps as the results. The developed fracture maps of capsules present a simple but valuable tool to assist the experimentalists in designing appropriate capsule materials for self-healing concrete.

关键词: self-healing concrete     interfacial zone     capsule materials     cohesive elements     fracture maps    

Studies of fiber-matrix debonding

Navneet DRONAMRAJU,Johannes SOLASS,Jörg HILDEBRAND

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 448-456 doi: 10.1007/s11709-015-0316-8

摘要: In this paper, the debonding of a single fiber-matrix system of carbon fiber reinforced composite (CFRP) AS4/Epson 828 material is studied using Cohesive Zone Model (CZM). The effect of parameters namely, maximum tangential contact stress, tangential slip distance and artificial damping coefficient on the debonding length at the interface of the fiber-matrix is analyzed. Contact elements used in the CZM are coupled based on a bilinear stress-strain curve. Load is applied on the matrix, tangential to the interface. Hence, debonding is observed primarily in Mode II. Wide range of values are considered to study the inter-dependency of the parameters and its effect on debonding length. Out of the three parameters mentioned, artificial damping coefficient and tangential slip distance significantly affect debonding length. A thorough investigation is recommended for case wise interface debonding analysis, to estimate the optimal parametric values while using CZM.

关键词: single fibre     cohesive zone model     interface debonding     carbon fiber reinforced composite (CFRP)    

混凝土裂缝端部粘聚力的计算

徐世烺,王利民

《中国工程科学》 2002年 第4卷 第5期   页码 53-58

摘要:

混凝土裂缝端部断裂过程区的粘聚力分布是导致混凝土断裂呈现非线性特性的重要原因。基于混凝土的断裂特性和虚拟裂缝端部存在粘聚力的分析模型,并通过分布函数的特性分析,提出了粘聚力分布函数的两种简化表达式:一为单参数待定式,另一为双参数待定式。由变形体叠加原理,推导出计算单参数待定函数公式和计算双参数待定函数代数方程组。进而通过裂缝张开位移实测数据即可求得粘聚力分布,并且给出了适当的算例分析和讨论。

关键词: 混凝土     裂缝张开位移     虚拟裂缝粘聚力     代数方程    

Applying the multi-zone model in predicting the operating range of HCCI engines

Ming JIA, Maozhao XIE, Zhijun PENG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 414-423 doi: 10.1007/s11708-010-0108-8

摘要: In this paper, a multi-zone model is developed to predict the operating range of homogeneous charge compression ignition (HCCI) engines. The boundaries of the operating range were determined by knock (presented by ringing intensity), partial burn (presented by combustion efficiency), and cycle-to-cycle variations (presented by the sensitivity of indicated mean effective pressure to initial temperature). By simulating an HCCI engine fueled with iso-octane, the knock and cycle-to-cycle variations predicted by the model showed satisfactory agreement with measurements made under different initial temperatures and equivalence ratios; the operating range was also well reproduced by the model. Furthermore, the model was applied to predict the operating range of the HCCI engine under different engine speeds by varying the intake temperatures and equivalence ratios. The potential to extend the operating range of the HCCI engine through two strategies, i.e., variable compression ratio and intake pressure boosting, was then investigated. Results indicate that the ignition point can be efficiently controlled by varying the compression ratio. A low load range can be extended by increasing the intake temperature while reducing the compression ratio. Higher intake temperatures and lower compression ratios can also extend the high load range. Boosting intake pressure is helpful in controlling the combustion of the HCCI engine, resulting in an extended high load range.

关键词: homogeneous charge compression ignition (HCCI) engine     multi-zone     operating range    

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 412-424 doi: 10.1007/s11709-017-0432-8

摘要:

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

关键词: WCSPH method     non-cohesive sediment transport     rheological model     two-part technique     two-phase dam break    

A modified zone model for estimating equivalent room thermal capacity

Hua CHEN, Xiaolin WANG

《能源前沿(英文)》 2013年 第7卷 第3期   页码 351-357 doi: 10.1007/s11708-013-0254-x

摘要: The zone model has been widely applied in control analysis of heating, ventilation and air conditioning (HVAC) systems to achieve a high building efficiency. This paper proposed a modified zone model which is much simpler in the HVAC system simulation and has the similar accuracy to the complicated simulation model. The proposed model took into consideration the effect of envelop heat reservoir on the room indoor temperature by introducing the thermal admittance of the inner surfaces of the building enclosure. The thermal admittance for the building enclosure was developed based on the building thermal network analytical theory and transfer function method. The efficacy of the proposed model was demonstrated by comparing it with the complicated model — heat balance method (HTB2 program). The predicted results from the proposed model well agreed with those from the complicated simulation. The proposed model can then make the HVAC system dynamic simulation much faster and more acceptable for control design due to its simplicity and efficiency.

关键词: room model     thermal network analysis     transfer function     heating     ventilation and air conditioning (HVAC) system simulation    

受限空间火灾模型研究进展

郑昕,袁宏永

《中国工程科学》 2004年 第6卷 第3期   页码 68-74

摘要:

火灾模型是从工程科学的角度出发,分析研究火灾的发生、发展,烟气蔓延以及火灾对周围环境诸如建筑设备、森林植被及大气环境等影响的数学模型。介绍了广泛应用于建筑物内部受限空间的场、区域、网模型以及经验模型的理论思想与数学方程,分析了4种模型在相应环境下应用的合理性,并对火灾模型的发展做出了展望。

关键词: 受限空间     场模型     区域模型     网模型     场区网模型     经验模型    

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 937-947 doi: 10.1007/s11709-021-0754-4

摘要: This study aims to investigate hydrofracturing in double-layered soil through theoretical and experimental analysis, as multilayered soils where the difference in mechanical properties exists are generally encountered in practical engineering. First, an analytical solution for fracturing pressure in two different concentric regions of soil was presented based on the cavity expansion theory. Then, several triaxial hydraulic fracturing tests were carried out to validate the analytical solution. The comparison between the experimental and analytical results indicates the remarkable accuracy of the derived formula, and the following conclusions were also obtained. First, there is a linear relationship between the fracturing pressure and confining pressure in concentric double-layered cohesive soil. Second, when the internal-layer soil is softer than the external-layer soil, the presence of internal soil on the fracturing pressure approximately brings the weakening effect, and the greater strength distinction between the two layers, the greater the weakening effect. Third, when the internal-layer soil is harder than the external-layer soil, the existence of the internal-layer soil has a strengthening effect on the fracturing pressure regardless of the proportion of internal-layer soil. Moreover, the influence of strength distinction between the two layers on the fracturing pressure is significant when the proportion of internal-layer soil is less than half, while it’s limited when the proportion is more than half. The proposed solution is potentially useful for geotechnical problems involving aspects of cohesive soil layering in a composite formation.

关键词: hydraulic fracturing pressure     layered     cavity expansion theory     triaxial fracturing test     cohesive soil    

隧道火灾烟气发展的模拟计算研究

李元洲,霍然,易亮,史聪灵,周允基

《中国工程科学》 2004年 第6卷 第2期   页码 67-72

摘要:

分析了隧道火灾的特点,运用区域模拟和场模拟的方法,通过一假定的隧道火灾算例,分析了几种不同情况下隧道火灾的烟气发展情况。讨论了烟气温度、高度的变化情况,得到了不同区段火和烟气对人构成威胁和对隧道结构造成破坏的情况,最后对隧道火灾的防治提出了一些建议。

关键词: 隧道火灾     区域模拟     场模拟     烟气发展    

Sequential Design of Simulations” approach for exploiting and calibrating discrete element simulations of cohesive

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 874-885 doi: 10.1007/s11705-021-2131-1

摘要: The flow behaviours of cohesive particles in the ring shear test were simulated and examined using discrete element method guided by a design of experiments methodology. A full factorial design was used as a screening design to reveal the effects of material properties of partcles. An augmented design extending the screening design to a response surface design was constructed to establish the relations between macroscopic shear stresses and particle properties. It is found that the powder flow in the shear cell can be classified into four regimes. Shear stress is found to be sensitive to particle friction coefficient, surface energy and Young’s modulus. A considerable fluctuation of shear stress is observed in high friction and low cohesion regime. In high cohesion regime, Young’s modulus appears to have a more significant effect on the shear stress at the point of incipient flow than the shear stress during the pre-shear process. The predictions from response surface designs were validated and compared with shear stresses measured from the Schulze ring shear test. It is found that simulations and experiments showed excellent agreement under a variety of consolidation conditions, which verifies the advantages and feasibility of using the proposed “Sequential Design of Simulations” approach.

关键词: discrete element method     cohesive materials     parameter calibration     ring shear cell     design of experiments    

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1494-1503 doi: 10.1007/s11709-021-0768-y

摘要: The problem related to bearing capacity of footing either on pure soil or on pure rock mass has been investigated over the years. Currently, no study deals with the bearing capacity of strip footing on a cohesive soil layer overlying rock mass. Therefore, by implementing the lower bound finite element limit analysis in conjunction with the second-order cone programming and the power cone programming, the ultimate bearing capacity of a strip footing located on a cohesive soil overlying rock mass is determined in this study. By considering the different values of interface adhesion factor (αcr) between the cohesive soil and rock mass, the ultimate bearing capacity of strip footing is expressed in terms of influence factor (If) for different values of cohesive soil layer cover ratio (Tcs/B). The failure of cohesive soil is modeled by using Mohr−Coulomb yield criterion, whereas Generalized Hoek−Brown yield criterion is utilized to model the rock mass at failure. The variations ofIf with different magnitudes of αcr are studied by considering the influence of the rock mass strength parameters of beneath rock mass layer. To examine stress distribution at different depths, failure patterns are also plotted.

关键词: bearing capacity     soil-rock interface     Hoek−Brown yield criterion     plasticity     limit analysis    

标题 作者 时间 类型 操作

Isogeometric cohesive zone model for thin shell delamination analysis based on Kirchhoff-Love shell model

Tran Quoc THAI, Timon RABCZUK, Xiaoying ZHUANG

期刊论文

Cohesive zone model-based analyses of localized leakage of segmentally lined tunnels

期刊论文

Simulation of cohesive crack growth by a variable-node XFEM

Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI

期刊论文

influence of delamination on the stiffness of composite pipes under compressive transverse loading using cohesivezone method

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

期刊论文

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zonemodel

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

期刊论文

Studies of fiber-matrix debonding

Navneet DRONAMRAJU,Johannes SOLASS,Jörg HILDEBRAND

期刊论文

混凝土裂缝端部粘聚力的计算

徐世烺,王利民

期刊论文

Applying the multi-zone model in predicting the operating range of HCCI engines

Ming JIA, Maozhao XIE, Zhijun PENG,

期刊论文

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

期刊论文

A modified zone model for estimating equivalent room thermal capacity

Hua CHEN, Xiaolin WANG

期刊论文

受限空间火灾模型研究进展

郑昕,袁宏永

期刊论文

Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil

期刊论文

隧道火灾烟气发展的模拟计算研究

李元洲,霍然,易亮,史聪灵,周允基

期刊论文

Sequential Design of Simulations” approach for exploiting and calibrating discrete element simulations of cohesive

期刊论文

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

期刊论文