资源类型

期刊论文 91

年份

2023 3

2022 3

2021 10

2020 6

2019 9

2018 3

2017 3

2015 7

2014 4

2013 9

2012 7

2011 4

2010 3

2009 3

2008 3

2007 4

2006 4

2005 2

2002 1

2000 2

展开 ︾

关键词

混凝土 4

疲劳裂纹 2

耐久性 2

裂缝 2

非线性有限元 2

ANSYS 1

B级钢 1

T形节点 1

Windows'95 1

β-粒子的横向振动 1

三峡升船机 1

三点弯曲梁 1

云降水微物理参数 1

人员疏散 1

人工气候 1

代数方程 1

低温韧性 1

信息处理 1

凝土结构 1

展开 ︾

检索范围:

排序: 展示方式:

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 227-243 doi: 10.1007/s11709-020-0687-3

摘要: To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.

关键词: high-strength steel reinforcement     high-strength concrete     flexural behavior     crack width    

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 527-535 doi: 10.1007/s11709-018-0450-1

摘要: Peridynamics is a theory in solid mechanics that uses integral equations instead of partial differential equations as governing equations. It can be applied to fracture problems in contrast to the approach of fracture mechanics. In this paper by using peridynamics, the crack path for inclined crack under dynamic loading were investigated. The peridynamics solution for this problem represents the main features of dynamic crack propagation such as crack bifurcation. The problem is solved for various angles and different stress values. In addition, the influence of geometry on inclined crack growth is studied. The results are compared with molecular dynamic solutions that seem to show reasonable agreement in branching position and time.

关键词: peridynamics     inclined crack     dynamic fracture     crack branching    

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 431-448 doi: 10.1007/s11708-021-0726-3

摘要: To improve the ignition behavior and to reduce the high NO emissions of blended pulverized fuels (PF) of semicoke (SC), large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings, i.e., ratios (denoted by / ) of the height of the rectangular burner nozzle to its width of 1.65, 2.32, and 3.22. The combustion tests indicate that the flame stability, ignition performance, and fuel burnout ratio were significantly improved at a nozzle setting of / = 2.32. The smaller / delayed ignition and caused the flame to concentrate excessively on the axis of the furnace, while the larger / easily caused the deflection of the pulverized coal flame, and a high-temperature flame zone emerged close to the furnace wall. NO emissions at the outlet of the primary zone decreased from 447 to 354 mg/m (O = 6%), and the ignition distance decreased from 420 to 246 mm when the / varied from 1.65 to 3.22. Furthermore, the ratio (denoted by / ) of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone. The / rose monotonously, but its restraining effects on NO formation decreased as / increased. The results suggested that in a test furnace, regulating the nozzle / conditions sharply reduces NO emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.

关键词: rectangular jet burner     nozzle height to width ratio     ignition characteristics     pyrolyzed semicoke (SC) and bituminous blend     NOx formation    

Peridynamics versus XFEM: a comparative study for quasi-static crack problems

Jinhai ZHAO, Hesheng TANG, Songtao XUE

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 548-557 doi: 10.1007/s11709-017-0434-6

摘要: Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations without spatial derivatives. The fracture criterion is implicitly incorporated in the PD theory and fracture is a natural outcome of the simulation. However, capturing of complex mixed-mode crack patterns has been proven to be difficult with PD. On the other hand, the extended finite element method (XFEM) is one of the most popular methods for fracture which allows crack propagation with minimal remeshing. It requires a fracture criterion which is independent of the underlying discretization though a certain refinement is needed in order to obtain suitable results. This article presents a comparative study between XFEM and PD. Therefore, two examples are studied. The first example is crack propagation in a double notched specimen under uniaxial tension with different crack spacings in loading direction. The second example is the specimens with two center cracks. The results show that PD as well as XFEM are well suited to capture this type of behaviour.

关键词: XFEM     peridynamic     bilateral crack     parallel double cracks     nonlocal theory    

Correlation between tension softening relation and crack extension resistance in concrete

Xiufang ZHANG , Shilang XU ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 323-329 doi: 10.1007/s11709-009-0041-2

摘要: Changes of the material fracture energy consumption with crack propagation can be described by a crack extension resistance curve, one of the fundamental fracture criteria in crack mechanics. Recently, experimental observation of the fracture behavior in concrete was used to develop a new fracture criterion, the crack extension resistance curve, to analyze crack propagation during the entire concrete fracture process. The variation of the crack extension resistance is mainly associated with the energy consumption in the fracture process zone ahead of the stress-free crack tip. The crack extension resistance is then a function of the softening curve, which is a basic mechanical property in the fracture process zone. The relationship between the softening curve and the crack extension resistance curve is then analyzed based on results of three-point bending beams tests. The results indicate that the characteristic points of the crack extension resistance curve is closely related to the characteristic point on used tension softening curve.

关键词: concrete     fracture process zone     crack extension GR resistance     tension softening curve    

Fracture resistance on aggregate bridging crack in concrete

ZHANG Xiufang, XU Shilang

《结构与土木工程前沿(英文)》 2007年 第1卷 第1期   页码 63-70 doi: 10.1007/s11709-007-0006-2

摘要: Fracture toughening exhibited in quasi-brittle materials such as concrete is often mainly related to the action of aggregate bridging, which leads to the presence of a fracture process zone ahead of stress-free cracks in such materials. In this investigation, the fracture resistance induced by aggregate bridging, denoted by GI-bridging, is the primary focus. In order to quantitatively determine it, a general analytical formula is firstly developed, based on the definition of fracture energy by Hillerborg. After this, we further present the calculated procedures of determining this fracture resistance from the recorded load vs. crack opening displacement curve. Then, both numerical simulations and fracture experiments are performed on concrete three-point bending beams. Utilizing the obtained load against crack opening displacement curve, the value of G at any crack extension as well as the change of G with the crack extension is examined. It is found that G will firstly increase with the development of crack and then stay constant once the initial crack tip opening displacement reaches the characteristic crack opening displacement w0. The effects of material strength and specimen depth on this fracture resistance are also investigated. The results reveal that the values of G of different specimens at any crack propagation are strongly associated with the values of fracture energy of specimens. If the values of fracture energy between different specimens are comparable, the differences between G are ignored. Instead, if values of fracture energy are different, the G will be different. This shows that for specimens with different strengths, G will change greatly whereas for specimens that are different in depth, whether GI-bridging exhibits size effect depends on whether the fracture energy of specimens considered in the calculation of G is assumed to be a size-dependent material parameter.

Stability and dynamics of rotor system with 45° slant crack on shaft

Yanli LIN, Xiaohui SI, Fulei CHU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 203-213 doi: 10.1007/s11465-011-0131-4

摘要:

Crack on a shaft is one of the common damages in a rotor system. In this paper, transverse vibrations are calculated to compare the influences of transverse crack and slant crack on the rotor system. Results show that the vibration amplitude of the rotor system with a 45° slant crack on the shaft is larger than that with a transverse crack when the two types of crack have the same depth and the rotor system runs in the same condition. Stability and dynamic characteristics of the rotor system with a 45° slant crack on the shaft under torsional excitation are analyzed by considering opening and closing of the crack. It is shown that the instability of the transverse vibration of the rotor system increases with increasing difference between the bending stiffness in two main directions, and the vibration is stable when the two bending stiffness are identical. The spectrum analysis of the steady-state response reveals that the gravity and the eccentricity produce different frequency components, and when the two bending stiffness are identical, the multiple frequency components of the torsional excitation disappear. Further investigation shows that the vibration amplitudes in combined frequencies increase rapidly in transversal, torsional, and axial vibration with increasing slant crack depth. The results are helpful for the understanding the dynamic behavior of a rotor system with a slant crack on a shaft and can be used for the detection of the slant crack on a shaft.

关键词: rotor dynamics     slant crack     stability     torsional excitation     open and close    

Study on the cohesion and adhesion of hot-poured crack sealants

Meng GUO, Yiqiu TAN, Xuesong DU, Zhaofeng LV

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 353-359 doi: 10.1007/s11709-017-0400-3

摘要: Filling crack sealant is a main method to repair cracking of pavement. The cohesion and adhesion of crack sealant directly determine its service performance and durability. However, the competitive mechanism of cohesion and adhesion failure modes is not clear currently. This research proposed two methods to evaluate cohesion and adhesion of crack sealant, and analyzed the influence of temperature on cohesion and adhesion. The effect of moisture on low-temperature performance of crack sealant was also be evaluated by conducting a soaking test. Results show that with the decrease of temperature, the cohesion force of crack sealant increases significantly, while the adhesion force changes little. There is a critical temperature at which the cohesion force equals the adhesion force. When the temperature is higher, the adhesion force will be greater than cohesion force, and the cohesion failure will happen more easily. In contrast, the adhesion failure will happen more easily when the temperature is lower than the critical value. Soaking in 25 °C water for 24–48 hours will slightly improve the low-temperature tension performance of crack sealant. However, soaking in 60 °C water for 24 hours will decrease the failure energy of low-temperature tension and damage the durability of crack sealant.

关键词: crack sealant     concrete pavement     cohesion     adhesion     moisture damage    

Numerical analysis of rotating stall characteristics in vaneless diffuser with large width-radius ratio

GAO Chuang, GU Chuangang, WANG Tong, DAI Zhengyuan

《能源前沿(英文)》 2008年 第2卷 第4期   页码 457-460 doi: 10.1007/s11708-008-0071-9

摘要: A two-dimensional model, where the influence of wall boundary layers is neglected and inlet jet-wake velocity patterns are prescribed, was applied to simulate one vaneless diffuser with a large width-radius ratio. The impact of diffuser length, impeller blade number, etc. on the rotating stall was analyzed. Computational results show that a different mechanism does exist for diffusers with large width-radius ratios. Comparison with related conclusions and references is supportive of the model.

关键词: Comparison     Computational     two-dimensional     influence     different mechanism    

Feasibility of crack free reinforced concrete bridge deck from materials composition perspective: a state

Mahdi AREZOUMANDI

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 91-103 doi: 10.1007/s11709-015-0274-1

摘要: Early age cracking on bridge deck has been the subject of many studies for years. Cracking is a major concern because it leads to premature deterioration of structures. Millions of dollars spent to repair the cracked bridge decks each year. To design an appropriate mixture for crack free bridge deck, it is important to study previous researches. This paper presents a comprehensive literature review of the performance of different materials compositions as well as methods have been used to reduce and control bridge deck cracks. Different material compositions and methods are discussed in terms of their performances as well as advantages and disadvantages.

关键词: bridge deck     crack     fiber     shrinkage     shrinkage reducing admixture    

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 339-347 doi: 10.1007/s11709-010-0078-2

摘要: In this paper, a concurrent simulation framework for fatigue crack growth analysis is proposed using a novel small time scale model for fatigue mechanism analysis and the extended finite element method (X-FEM) for fatigue crack growth simulation. The proposed small time scale fatigue model does not require the cycle counting as those using the classical fatigue analysis methods and can be performed concurrently with structural/mechanical analysis. The X-FEM greatly facilitates crack growth simulation without remeshing requirements ahead of the crack tip as in the classical finite element method. The basic concept and theory of X-FEM was briefly introduced and numerical predictions of stress intensity factors are verified with reference solutions under both uniaxial and multiaxial loadings. The small time scale fatigue model is integrated into the numerical simulation algorithm for concurrent fatigue crack growth analysis. Model predictions are compared with available experimental observations for model validation.

关键词: small time scale model     extended finite element method (X-FEM)     crack growth     multiaxial    

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 255-262 doi: 10.1007/s11465-015-0342-1

摘要:

The well-known fatigue crack growth (FCG) curves are two-parameter dependents. The range of the stress intensity factor ?K and the load ratio R are the parameters normally used for describing these curves. For engineering purposes, the mathematical representation of these curves should be integrated between the initial and final crack sizes in order to obtain the safety factors for stresses and life. First of all, it is necessary to reduce the dependence of the FCG curves to only one parameter. ?K is almost always selected and, in these conditions, considered as the crack driving force. Using experimental data from literature, the present paper shows how to perform multiple regression analyses using the traditional Walker approach and the more recent unified approach. The correlations so obtained are graphically analyzed in three dimensions. Numerical examples of crack growth analysis for cracks growing under nominal stresses of constant amplitude in smooth and notched geometries are performed, assuming an identical material component as that of the available experimental data. The resulting curves of crack size versus number of cycles (a vs. N) are then compared. The two models give approximately the same (a vs. N) curves in both geometries. Differences between the behaviors of the (avs. N) curves in smooth and notched geometries are highlighted, and the reasons for these particular behaviors are discussed.

关键词: fatigue crack propagation modeling     life prediction     mean stress effects    

Stress field near circular-arc interface crack tip based on electric saturation concept

Longchao DAI, Xinwei WANG

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 320-325 doi: 10.1007/s11465-009-0042-9

摘要: Within the framework of nonlinear electroelasticity, the anti-plane problem of a circular-arc interfacial crack between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix subjected to a far-field uniform loading is investigated by an electrical strip saturation model, the complex variable method, and the method of analytical continuation. Explicit closed form expressions for the complex potentials in both the matrix and the inclusion, and the stress intensity factor at the crack tip are presented. Comparison with some related solutions based on the linear electroelastic theory shows the validity of the present solutions

关键词: piezoelectric material     arc crack     strip saturation     stress intensity factor    

Crack propagation with different radius local random damage based on peridynamic theory

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1238-1248 doi: 10.1007/s11709-021-0695-y

摘要: Drawing from the advantages of Classical Mechanics, the peridynamic theory can clarify the crack propagation mechanism by an integral solution without initially setting the factitious crack and crack path. This study implements the peridynamic theory by subjecting bilateral notch cracked specimens to the conditions of no local damage, small radius local damage, and large radius local damage. Moreover, to study the effects of local stochastic damage with different radii on the crack propagation path and Y-direction displacement, a comparison and contact methodology was adopted, in which the crack propagation paths under uniaxial tension and displacement in the Y-direction were compared and analyzed. This method can be applied to steel structures under similar local random damage conditions.

关键词: peridynamics     stochastic damage     bilateral notch crack    

标题 作者 时间 类型 操作

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

期刊论文

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

期刊论文

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

期刊论文

Peridynamics versus XFEM: a comparative study for quasi-static crack problems

Jinhai ZHAO, Hesheng TANG, Songtao XUE

期刊论文

Correlation between tension softening relation and crack extension resistance in concrete

Xiufang ZHANG , Shilang XU ,

期刊论文

Fracture resistance on aggregate bridging crack in concrete

ZHANG Xiufang, XU Shilang

期刊论文

Stability and dynamics of rotor system with 45° slant crack on shaft

Yanli LIN, Xiaohui SI, Fulei CHU

期刊论文

Study on the cohesion and adhesion of hot-poured crack sealants

Meng GUO, Yiqiu TAN, Xuesong DU, Zhaofeng LV

期刊论文

Numerical analysis of rotating stall characteristics in vaneless diffuser with large width-radius ratio

GAO Chuang, GU Chuangang, WANG Tong, DAI Zhengyuan

期刊论文

Feasibility of crack free reinforced concrete bridge deck from materials composition perspective: a state

Mahdi AREZOUMANDI

期刊论文

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

期刊论文

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI

期刊论文

Stress field near circular-arc interface crack tip based on electric saturation concept

Longchao DAI, Xinwei WANG

期刊论文

Crack propagation with different radius local random damage based on peridynamic theory

期刊论文