资源类型

期刊论文 225

年份

2023 32

2022 28

2021 32

2020 18

2019 14

2018 11

2017 9

2016 5

2015 10

2014 5

2013 6

2012 6

2011 5

2010 9

2009 6

2008 6

2007 8

2005 2

2004 1

2003 2

展开 ︾

关键词

氢能 5

燃料电池 5

制氢 4

可再生能源 3

力常数 2

新能源 2

无氢渗碳 2

氢燃料电池 2

硫化氢 2

过氧化氢 2

键能 2

键长 2

2035 1

CCS 1

CO2分离 1

N3C空位 1

n-Si 1

产业规模化 1

产业链 1

展开 ︾

检索范围:

排序: 展示方式:

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered

《化学科学与工程前沿(英文)》   页码 1643-1650 doi: 10.1007/s11705-022-2201-z

摘要: Microcapsules are versatile delivery vehicles and widely used in various areas. Generally, microcapsules with solid shells lack selective permeation and only exhibit a simple release mode. Here, we use ultrathin-shell water-in-oil-in-water double emulsions as templates and design porous ultrathin-shell microcapsules for selective permeation and multiple stimuli-triggered release. After preparation of double emulsions by microfluidic devices, negatively charged shellac nanoparticles dispersed in the inner water core electrostatically complex with positively charged telechelic α,ω-diamino functionalized polydimethylsiloxane polymers dissolved in the middle oil shell at the water/oil interface, thus forming a porous shell of shellac nanoparticles cross-linked by telechelic polymers. Subsequently, the double emulsions become porous microcapsules upon evaporation of the middle oil phase. The porous ultrathin-shell microcapsules exhibit excellent properties, including tunable size, selective permeation and stimuli-triggered release. Small molecules or particles can diffuse across the shell, while large molecules or particles are encapsulated in the core, and release of the encapsulated cargos can be triggered by osmotic shock or a pH change. Due to their unique performance, porous ultrathin-shell microcapsules present promising platforms for various applications, such as drug delivery.

关键词: microcapsule     emulsion     microfluidics     selective permeation     stimuli-triggered release    

Novel methods by using non-vacuum insulated tubing to extend the lifetime of the tubing

Chenglong ZHOU,Guojin ZHU,Yongxiang XU,Jifei YU,Xiaoliang ZHANG,Hongzhi SHENG

《能源前沿(英文)》 2015年 第9卷 第2期   页码 142-147 doi: 10.1007/s11708-015-0357-7

摘要: The analysis of the failure mechanics, namely hydrogen permeation of vacuum insulated tubing (VIT), indicated that the failure of VIT could be decreased but could not be avoided. To solve this problem, some measures by using non-vacuum materials were proposed and analyzed in this paper. The results show that to fill the tubing with foam-glass beads or high pressure argon may lead to a good performance.

关键词: vacuum insulated tubing     cyclic steam stimulation     insulation material     thermal conductivity     foam-glass     hydrogen permeation    

ethylene-co-vinyl alcohol) molecular weight and vinyl alcohol content on morphology, antifouling, and permeation

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1484-1502 doi: 10.1007/s11705-023-2331-y

摘要: Various hydrophilic poly(ethylene-co-vinyl alcohol) (EVOH) were used herein to precisely control the structure and hydrodynamic properties of polysulfone (PSF) membranes. Particularly, to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol (VOH: 73%, 68%, 56%), the non-solvent-induced phase separation (NIPS) technique was used. Polyethylene glycol was used as a compatibilizer and as a porogen in N,N-dimethylacetamide. Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism. The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism. Accordingly, the addition of EVOH led to an increase in the rheology of the dopes. The resulting membranes exhibited a microporous structure, while the finger-like structures became more evident with increasing VOH content. The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics. Interestingly, the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m–2·h–1·bar–1, which was higher than that of pure PSF membranes (171 L·m–2·h–1·bar–1). In addition, PSF/EVOH32 rejected bovine serum albumin at a high rate (> 90%) and achieved a significant restoration of permeability. Finally, from the thermodynamic and hydrodynamic results, valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.

关键词: polysulfone     blend modification     ultrafiltration membrane     formation hydrodynamics     poly(ethylene-co-vinyl alcohol) copolymer    

用于灵敏快速测量超阻隔渗透的预测仪器 Article

完颜剑峰, 曹坤, 陈志平, 李云, 刘晨曦, 吴润卿, 张晓东, 陈蓉

《工程(英文)》 2021年 第7卷 第10期   页码 1461-1470 doi: 10.1016/j.eng.2021.02.017

摘要:

测量柔性有机显示器件对水蒸气的高阻隔性,是确保其可靠性所面临的重大工程挑战。一方面,目前缺少10-6 g·m-2·d-1量级的水渗透率测试手段;另一方面,目前也没有标准的超阻隔样品用于渗透率测量的校准。为了对渗透过超阻隔材料的痕量水蒸气流量进行高灵敏、短周期测量,本文将渗透模型集成至基于渗透分子动态积累、检测和抽空的高灵敏质谱测量中,从而开发出了一种具有预测功能的测量仪器。通过使用标准聚合物样品进行校准,确保了测量结果的可靠性。校准后的水蒸气渗透检测下限在10-7g·m-2·d-1量级,满足超阻隔渗透的测量灵敏度要求。本文利用渗透实验数据对所开发的预测渗透模型进行了测试评估,使得利用非稳态数据预测稳态渗透率成为可能,实现在更短的时间内有效开展超阻隔测量。

关键词: 水蒸气渗透     超阻隔     预测模型     四极杆质谱仪    

Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion

Jian CHEN, Jiding LI, Xia ZHAN, Xiaolong HAN, Cuixian CHEN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 300-306 doi: 10.1007/s11705-009-0280-8

摘要: This study investigated the effect of poly(ethylene glycol) (PEG) additive as a pore-former on the structure formation of membranes and their permeation properties connected with the changes in thermodynamic and kinetic properties in the phase inversion process. The membranes were prepared by using polyetherimide/-methyl-2-pyrrolidone/PEG (PEI/NMP/PEG) casting solution and water coagulant. The resulting membranes, prepared by changing the ratio of PEG to PEI, were characterized by scanning electron microscope (SEM) observations, measurements of water flux and -globin rejection. The thermodynamic and kinetic properties of the membrane-forming system were studied through viscosity. The pore radius distribution curves were especially obtained by differential scanning calorimetry (DSC). Furthermore, the membranes were characterized for pure water flux and rejection of solute and by SEM observation. The filtration results agreed well with the SEM observations. As expected, PEG with a fixed molecular weight (PEG 600) acted as a pore forming agent, and membrane porosity increased as the PEG content of the casting solution increased.

关键词: permeation     ethylene     filtration     PEI/NMP/PEG     membrane    

A systemic review of hydrogen supply chain in energy transition

《能源前沿(英文)》 2023年 第17卷 第1期   页码 102-122 doi: 10.1007/s11708-023-0861-0

摘要: Targeting the net-zero emission (NZE) by 2050, the hydrogen industry is drastically developing in recent years. However, the technologies of hydrogen upstream production, midstream transportation and storage, and downstream utilization are facing obstacles. In this paper, the development of hydrogen industry from the production, transportation and storage, and sustainable economic development perspectives were reviewed. The current challenges and future outlooks were summarized consequently. In the upstream, blue hydrogen is dominating the current hydrogen supply, and an implementation of carbon capture and sequestration (CCS) can raise its cost by 30%. To achieve an economic feasibility, green hydrogen needs to reduce its cost by 75% to approximately 2 /kg at the large scale. The research progress in the midterm sector is still in a preliminary stage, where experimental and theoretical investigations need to be conducted in addressing the impact of embrittlement, contamination, and flammability so that they could provide a solid support for material selection and large-scale feasibility studies. In the downstream utilization, blue hydrogen will be used in producing value-added chemicals in the short-term. Over the long-term, green hydrogen will dominate the market owing to its high energy intensity and zero carbon intensity which provides a promising option for energy storage. Technologies in the hydrogen industry require a comprehensive understanding of their economic and environmental benefits over the whole life cycle in supporting operators and policymakers.

关键词: hydrogen production     hydrogen transportation and storage     hydrogen economy     carbon capture and sequestration (CCS)     technology assessment    

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 34-63 doi: 10.1007/s11705-021-2050-1

摘要: H2S is well-known as a colorless, acidic gas, with a notoriously rotten-egg smell. It was recently revealed that H2S is also an endogenous signaling molecule that has important biological functions, however, most of its physiology and pathology remains elusive. Therefore, the enthusiasm for H2S research remains. Fluorescence imaging technology is an important tool for H2S biology research. The development of fluorescence imaging technology has realized the study of H2S in subcellular organelles, facilitated by the development of fluorescent probes. The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups: H2S reducibility-based probes, H2S nucleophilicity-based probes, and metal sulfide precipitation-based probes. The structure of the probes, their sensing mechanism, and imaging results have been discussed in detail. Moreover, we also introduced some probes for hydrogen polysulfides.

关键词: hydrogen sulfide     fluorescent probe     reducibility     nucleophilicity     copper sulfide precipitate     hydrogen polysulfides    

Production of hydrogen from fossil fuel: A review

《能源前沿(英文)》 2023年 第17卷 第5期   页码 585-610 doi: 10.1007/s11708-023-0886-4

摘要: Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several non-noble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al2O3 catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.

关键词: methane     catalytic conversion     natural gas     hydrogen production     CCUS    

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

《能源前沿(英文)》 2021年 第15卷 第1期   页码 667-677 doi: 10.1007/s11708-021-0767-7

摘要: Owing to the outstanding characteristics of tailorable electronic and optical properties, semiconducting polymers have attracted considerable attention in recent years. Among them, organic polymer dots process large breadth of potential synthetic diversity are the representative of photocatalysts for hydrogen production, which presents both an opportunity and a challenge. In this mini-review, first, the organic polymer photocatalysts were introduced. Then, recent reports on polymer dots which showed a superior photocatalytic activity and a robust stability under visible-light irradiation, for hydrogen production were summarized. Finally, challenges and outlook on using organic polymer dots-based photocatalysts from hydrogen production were discussed.

关键词: polymer dots (Pdots)     photocatalysis     hydrogen production    

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 464-482 doi: 10.1007/s11705-020-1983-0

摘要: The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H /CH selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.

关键词: power to hydrogen     membrane technology     hydrogen     energy    

我国氢能产业发展战略研究

凌文,李全生,张凯

《中国工程科学》 2022年 第24卷 第3期   页码 80-88 doi: 10.15302/J-SSCAE-2022.03.009

摘要:

本文从“双碳”目标背景和氢能在我国构建清洁低碳、安全高效现代能源体系中的作用出发,系统梳理了全球氢能产业的进展情况,从氢能产业规模、产业特点、产业政策等方面分析了我国氢能源产业的发展现状、发展需求和面临的主要问题。当前,我国氢能产业战略布局不断强化,氢能基础设施领域投资逐步开展,区域产业集聚效应初步显现,但存在标准体系不健全、产业同质化苗头显现、产业链尚未打通且应用场景单一等挑战。研究建议:进一步加强氢能产业发展顶层设计,系统构建制氢、储氢及用氢技术标准体系,加大氢能全产业链的试点示范与推广,提升氢能科技创新,实现高水平自立自强,进而推动我国氢能产业高质量发展。

关键词: 氢能全产业链;碳中和;碳达峰;制氢;供氢;用氢    

Therapeutic application of hydrogen sulfide donors: the potential and challenges

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 18-27 doi: 10.1007/s11684-015-0427-6

摘要:

Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of anti-inflammatory drugs.

关键词: hydrogen sulfide     cardiovascular     cancer     hypertension    

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

《能源前沿(英文)》 doi: 10.1007/s11708-023-0870-z

摘要: Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

关键词: threshold solar water     splitting hydrogen III    

A mini-review of ferrites-based photocatalyst on application of hydrogen production

《能源前沿(英文)》 2021年 第15卷 第3期   页码 621-630 doi: 10.1007/s11708-021-0761-0

摘要: Photocatalytic water splitting for hydrogen production is a promising strategy to produce renewable energy and decrease production cost. Spinel-ferrites are potential photocatalysts in photocatalytic reaction system due to their room temperature magnetization, the high thermal and chemical stability, narrow bandgap with broader visible light absorption, and proper conduction band energy level with strong oxidation activity for water or organic compounds. However, the fast recombination of the photoexcited electrons and holes is a critical drawback of ferrites. Therefore, the features of crystallinity, particle size, specific surface area, morphology, and band energy structure have been summarized and investigated to solve this issue. Moreover, composites construction with ferrites and the popular support of TiO2 or g-C3N4 are also summarized to illustrate the advanced improvement in photocatalytic hydrogen production. It has been shown that ferrites could induce the formation of metal ions impurity energy levels in TiO2, and the strong oxidation activity of ferrites could accelerate the oxidation reaction kinetics in both TiO2/ferrites and g-C3N4/ferrites systems. Furthermore, two representative reports of CaFe2O4/MgFe2O4 composite and ZnFe2O4/CdS composite are used to show the efficient heterojunction in a ferrite/ferrite composite and the ability of resistance to photo-corrosion, respectively.

关键词: photocatalyst     spinel-ferrite     composite     photocatalytic hydrogen production    

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

《能源前沿(英文)》 doi: 10.1007/s11708-023-0894-4

摘要: It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

关键词: SrTiO3 nanocrystals     crystal facets     photocatalysis     hydrogen evolution    

标题 作者 时间 类型 操作

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered

期刊论文

Novel methods by using non-vacuum insulated tubing to extend the lifetime of the tubing

Chenglong ZHOU,Guojin ZHU,Yongxiang XU,Jifei YU,Xiaoliang ZHANG,Hongzhi SHENG

期刊论文

ethylene-co-vinyl alcohol) molecular weight and vinyl alcohol content on morphology, antifouling, and permeation

期刊论文

用于灵敏快速测量超阻隔渗透的预测仪器

完颜剑峰, 曹坤, 陈志平, 李云, 刘晨曦, 吴润卿, 张晓东, 陈蓉

期刊论文

Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion

Jian CHEN, Jiding LI, Xia ZHAN, Xiaolong HAN, Cuixian CHEN,

期刊论文

A systemic review of hydrogen supply chain in energy transition

期刊论文

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

期刊论文

Production of hydrogen from fossil fuel: A review

期刊论文

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

期刊论文

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

期刊论文

我国氢能产业发展战略研究

凌文,李全生,张凯

期刊论文

Therapeutic application of hydrogen sulfide donors: the potential and challenges

null

期刊论文

Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires

期刊论文

A mini-review of ferrites-based photocatalyst on application of hydrogen production

期刊论文

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

期刊论文