资源类型

期刊论文 1102

年份

2024 1

2023 112

2022 98

2021 100

2020 83

2019 68

2018 81

2017 60

2016 44

2015 71

2014 46

2013 42

2012 32

2011 45

2010 38

2009 33

2008 29

2007 24

2006 11

2005 10

展开 ︾

关键词

可再生能源 10

可持续发展 10

节能 10

能源 9

核能 7

能源安全 6

2035 4

新能源 4

氢能 4

燃料电池 4

碳中和 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

关键技术 3

展开 ︾

检索范围:

排序: 展示方式:

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

《能源前沿(英文)》 2019年 第13卷 第2期   页码 251-268 doi: 10.1007/s11708-019-0625-z

摘要: In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in solar energy conversion applications, molybdenum disulfide (MoS ) stands out as a promising alternative 2D material with excellent properties. This review first examined various methods for MoS synthesis. It, then, summarized the unique structure and properties of MoS nanosheets. Finally, it presented the latest advances in the use of MoS nanosheets for important solar energy applications, including solar thermal water purification, photocatalytic process, and photoelectrocatalytic process.

关键词: 2D nanomaterial     molybdenum disulfide     solar energy conversion     solar thermal conversion     photocatalytst     photoelectrocatalyst    

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 262-288 doi: 10.1007/s11708-009-0015-z

摘要: Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

关键词: photovoltaic conversion     energy harvesting     solar cell     maximum power point track algorithm     PV electricity storage     mobile/standalone PV application    

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 636-653 doi: 10.1007/s11705-019-1824-1

摘要: Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

关键词: solar stream generation     plasmonics     porous carbon     photothermal materials     solar energy conversion efficiency     water vapor generation rate    

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 882-888 doi: 10.1007/s11708-020-0694-z

摘要: The sun and outer space are the ultimate heat and cold sources for the earth, respectively. They have significant potential for renewable energy harvesting. In this paper, a spectrally selective surface structure that has a planar polydimethylsiloxane layer covering a solar absorber is conceptually proposed and optically designed for the combination of photothermic conversion (PT) and nighttime radiative sky cooling (RC). An optical simulation is conducted whose result shows that the designed surface structure (i.e., PT-RC surface structure) has a strong solar absorption coefficient of 0.92 and simultaneously emits as a mid-infrared spectral-selective emitter with an average emissivity of 0.84 within the atmospheric window. A thermal analysis prediction reveals that the designed PT-RC surface structure can be heated to 79.1°C higher than the ambient temperature in the daytime and passively cooled below the ambient temperature of approximately 10°C in the nighttime, indicating that the designed PT-RC surface structure has the potential for integrated PT conversion and nighttime RC utilization.

关键词: solar energy     photothermic conversion     radiative sky cooling     spectral selectivity     multilayer film    

Spectral emittance measurements of micro/nanostructures in energy conversion: a review

Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG

《能源前沿(英文)》 2020年 第14卷 第3期   页码 482-509 doi: 10.1007/s11708-020-0693-0

摘要: Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.

关键词: concentrating solar power (CSP)     emittance measurements     high temperature     micro/nanostructure     selective absorber     selective emitter     thermophotovoltaics (TPV)    

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

《能源前沿(英文)》 2021年 第15卷 第3期   页码 577-595 doi: 10.1007/s11708-021-0756-x

摘要: Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.

关键词: hydrogel     photocatalysts     energy conversion     environmental treatment    

The energy-environment nexus: aerosol science and technology enabling solutions

Pratim BISWAS, Wei-Ning WANG, Woo-Jin AN

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 299-312 doi: 10.1007/s11783-011-0351-1

摘要: Energy issues are important and consumption is slated to increase across the globe in the future. The energy-environment nexus is very important as strategies to meet future energy demand are developed. To ensure sustainable growth and development, it is essential that energy production is environmentally benign. There are two temporal issues—one that is immediate, and needs to address the environmental compliance of energy generation from fossil fuel sources; and second that is the need to develop newer alternate and more sustainable approaches in the future. Aerosol science and technology is an enabling discipline that addresses the energy issue over both these time scales. The paper is a review of aspects of aerosol science and engineering that helps address carbon neutrality of fossil fuels. Advanced materials to meet these challenges are discussed. Future approaches to effective harvesting of sunlight that are enabled by aerosol studies are discussed.

关键词: energy-environment nexus     aerosol science and technology     fossil fuels     carbon dioxide conversion     solar energy     nanoparticle technology    

A review on front end conversion in ocean wave energy converters

Nagulan SANTHOSH,Venkatesan BASKARAN,Arunachalam AMARKARTHIK

《能源前沿(英文)》 2015年 第9卷 第3期   页码 297-310 doi: 10.1007/s11708-015-0370-x

摘要: Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustainability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.

关键词: wave energy converter     point absorbers     power take off (PTO)     front end energy conversion    

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

Xiaoping CHEN, Wenfeng SHANGGUAN

《能源前沿(英文)》 2013年 第7卷 第1期   页码 111-118 doi: 10.1007/s11708-012-0228-4

摘要: Hydrogen energy has been regarded as the most promising energy resource in the near future due to that it is a clean and sustainable energy. And the heterogeneous photocatalytic hydrogen production is increasingly becoming a research hotspot around the world today. As visible light response photocatalysts for hydrogen production, cadmium sulfide (CdS) is the most representative material, the research of which is of continuing popularity. In the past several years, there has been significant progress in water splitting on CdS-based photocatalysts using solar light, especially in the development of co-catalysts. In this paper, recent researches into photocatalytic water splitting on CdS-based photocatalysts are reviewed, including controllable synthesis of CdS, modifications with different kinds of cocatalysts, solid solution, intercalated with layered nanocomposites and metal oxides, and hybrids with graphenes etc. Finally, the problems and future challenges in photocatalytic water splitting on CdS-based photocatalysts are described.

关键词: hydrogen     photocatalysis     solar conversion     cadmium sulfide (CdS) complex    

Micro/nanofluidics-enabled energy conversion and its implemented devices

Yang YANG, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第3期   页码 270-287 doi: 10.1007/s11708-010-0126-6

摘要: Most people were not aware of the role of energy as a basic force that drives the development and economic growth of the world until the two great oil crises occurred. According to the conservation law, energy not only exists in various forms but is also capable of being converted from one form to another. The common forms of energy are mechanical energy, chemical energy, internal energy, electrical energy, atomic energy, and electromagnetic energy, among others. The fluids in nature serve as the most common carriers and media in the energy conversion process. Following the rapid development of microelectromechanical systems (MEMS) technology, the energy supply and conversion issue in micro/nano scale has also been introduced in research laboratories worldwide. With unremitting efforts, great quantities of micro/nano scale energy devices have been investigated. Micro/nanofluid shows distinct features in transporting and converting energy similar to their counterpart macroscale tasks. In this paper, a series of micro/nanofluid-enabled energy conversion devices is reviewed based on the transformation between different forms of energy. The evaluation and contradistinction of their performances are also examined. The role of micro/nanofluid as media in micro/nano energy devices is summarized. This contributes to the establishment of a comprehensive and systematic structure in the relationship between energy conversion and fluid in the micro/nano scale. Some fundamental and practical issues are outlined, and the prospects in this challenging area are explored.

关键词: micro/nanofluid     different energy forms     energy conversion     medium role    

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2012年 第6卷 第2期   页码 184-192 doi: 10.1007/s11708-012-0185-y

摘要: Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.

关键词: doubly fed induction generator (DFIG)     load frequency control     inertial control     wind energy conversion system (WECS)    

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

《能源前沿(英文)》 2016年 第10卷 第4期   页码 466-472 doi: 10.1007/s11708-016-0417-7

摘要: The recent trend in light emitting diode or LED lighting applications and their claimed energy saving capabilities together with their overall attractiveness has us all convinced that they really are a greener alternative to the compact fluorescent lights or CFL. As convincing as it seems, the actual energy saving capabilities of LEDs are yet to be proven scientifically or at the least, on an empirical level when compared to CFLs. This paper tackles the issue with the use of a solar cell by evaluating the photovoltaic current and voltage generated by the solar cell subjected to each lighting system. Graphical representations are drawn and a conclusion is then reached based on the amount of power generation in the solar cells in order to determine the energy saving capabilities of each lighting system and its efficiency. From the result, it has been found that an LED is 3.7 times more power efficient than a CFL based light source of equal wattage.

关键词: CFL     LED     empirical     solar     lumens     energy saving     fluorescent    

Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage

Hong YANG, Junliang ZHANG, Baolian YI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 233-235 doi: 10.1007/s11708-017-0501-7

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

《能源前沿(英文)》 2013年 第7卷 第4期   页码 525-534 doi: 10.1007/s11708-013-0278-2

摘要: If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildings or raise the road surface temperature for snow melting in winter. A road-solar energy system was built in this study, and the heat transfer mechanism and effect of the system were analyzed according to the monitored solar radiant heat, the solar energy absorbed by road and the heat stored by soil. The results showed that the road surface temperature was mainly affected by solar radiation, but the effect is hysteretic in nature. The temperature of the solar road surface was 3°C–6°C lower than that of the ordinary road surface. The temperature of the solar road along the vertical direction was 2°C–5°C lower than that of the ordinary road. The temperature difference increased as the distance to the heat transfer tubes decreased. The average solar collector efficiency of the system was 14.4%, and the average solar absorptivity of road surface was 36%.

关键词: solar energy     road-solar energy system     road surface temperature     solar absorptivity of road surface     solar collector efficiency of system    

Special column: solar energy conversion

Yun Hang HU, Fangming JIN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 205-206 doi: 10.1007/s11708-019-0636-9

标题 作者 时间 类型 操作

Recent progress in MoS

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

期刊论文

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

期刊论文

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

期刊论文

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

期刊论文

Spectral emittance measurements of micro/nanostructures in energy conversion: a review

Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG

期刊论文

Hydrogel photocatalysts for efficient energy conversion and environmental treatment

期刊论文

The energy-environment nexus: aerosol science and technology enabling solutions

Pratim BISWAS, Wei-Ning WANG, Woo-Jin AN

期刊论文

A review on front end conversion in ocean wave energy converters

Nagulan SANTHOSH,Venkatesan BASKARAN,Arunachalam AMARKARTHIK

期刊论文

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

Xiaoping CHEN, Wenfeng SHANGGUAN

期刊论文

Micro/nanofluidics-enabled energy conversion and its implemented devices

Yang YANG, Jing LIU

期刊论文

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

期刊论文

Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage

Hong YANG, Junliang ZHANG, Baolian YI

期刊论文

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

期刊论文

Special column: solar energy conversion

Yun Hang HU, Fangming JIN

期刊论文