资源类型

期刊论文 2

年份

2021 1

2013 1

关键词

检索范围:

排序: 展示方式:

Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO

Reza Katal, Mohammad Tanhaei, Jiangyong Hu

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1319-9

摘要: Abstract • Photocatalytic activity was improved in TiO2 thin film by rapid thermal annealing. • Photoreactor was designed for TiO2 thin film. • Considerable reusability and durability of prepared photocatalysts were studied. Un-biodegradable pharmaceuticals are one of the major growing threats in the wastewaters. In the current study, TiO2 thin film photocatalysts were designed by nanocrystal engineering and fabricated for degradation of the acetaminophen (ACE) in a photocatalytic reaction under UV light irradiation in batch and continuous systems. The photocatalyst was prepared by sputtering and then engineered by thermal treatment (annealing at 300℃ (T300) and 650℃ (T650)). The annealing effects on the crystallinity and photocatalytic activity of the TiO2 film were completely studied; it was found that annealing at higher temperatures increases the surface roughness and grain size which are favorable for photocatalytic activity due to the reduction in the recombination rate of photo-generated electron-hole pairs. For the continuous system, a flat plate reactor (FPR) was designed and manufactured. The photocatalytic performance was decreased with the increase of flow rate because the higher flow rate caused to form the thicker film of the liquid in the reactor and reduced the UV light received by photocatalyst. The reusability and durability of the samples after 6 h of photocatalytic reaction showed promising performance for the T650 sample (annealed samples in higher temperatures).

关键词: Acetaminophen     TiO2     Thin film     Batch     Continuous    

Effects of a structurally related substance on the crystallization of paracetamol

Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 79-87 doi: 10.1007/s11705-013-1308-7

摘要: Paracetamol (PCM) was crystallized from an isopropanol (IPA) solution containing various small amounts of metacetamol as an additive. The effect on the nucleation kinetics was studied by measuring the induction time to nucleation and the metastable zone width using focused beam reflectance measurements (FBRM) and attenuated total reflectance (ATR-UV/Vis) spectroscopy. Both the induction time and the metastable zone width were expressed as functions of the additive concentration. Small amounts of metacetamol (1–4 mol-%) were found to cause significant inhibition to the nucleation by extending both the induction time and the metastable zone width. A progressive change in the morphology of the paracetamol crystals from tabular to columnar habit was observed with increasing metacetamol concentration. The solvent also had a significant effect on the size of the paracetamol crystals as smaller crystals were obtained in IPA than in aqueous solution. The dissolution rate of paracetamol was improved by the incorporation of metacetamol with 4 mol-% having the most effect. A supersaturation control (SSC) approach was implemented for the PCM-IPA system with and without metacetamol in an attempt to control and obtain larger metacetamol-doped paracetamol crystals.

关键词: acetaminophen     metacetamol     crystallization     metastable zone width     induction time     supersaturation control    

标题 作者 时间 类型 操作

Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO

Reza Katal, Mohammad Tanhaei, Jiangyong Hu

期刊论文

Effects of a structurally related substance on the crystallization of paracetamol

Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY

期刊论文