资源类型

期刊论文 9

年份

2023 4

2019 1

2018 1

2017 1

2011 2

关键词

分子链取向 1

电场 1

纳米纤维 1

聚环氧乙烷 1

静电纺丝 1

展开 ︾

检索范围:

排序: 展示方式:

Electrospinning of polycarbonate urethane biomaterials

Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 11-18 doi: 10.1007/s11705-010-1011-x

摘要: Polycarbonate urethane (PCU) nano-fibers were fabricated via electrospinning using - dimethylformamide (DMF) and tetrahydrofuran (THF) as the mixed solvent. The effect of volume ratios of DMF and THF in the mixed solvent on the fiber structures was investigated. The results show that nano-fibers with a narrow diameter distribution and a few defects were obtained when mixed solvent with the appropriate volume ratio of DMF and THF as 1∶1. When the proportion of DMF was more than 75% in the mixed solvent, it was easy to form many beaded fibers. The applied voltage in the electrospinning process has a significant influence on the morphology of fibers. When the electric voltage was set between 22 and 32 kV, the average diameters of the fibers were found between 420 and 570 nm. Scanning electron microscopy (SEM) images showed that fiber diameter and structural morphology of the electrospun PCU membranes are a function of the polymer solution concentration. When the concentration of PCU solution was 6.0 wt-%, a beaded-fiber microstructure was obtained. With increasing the concentration of PCU solutions above 6.0 wt-%, beaded fiber decreased and finally disappeared. However, when the PCU concentration was over 14.0 wt-%, the average diameter of fibers became large, closed to 2 μm, because of the high solution viscosity. The average diameter of nanofibers increased linearly with increasing the volume flow rate of the PCU solution (10.0 wt-%) when the applied voltage was 24 kV. The results show that the morphology of PCU fibers could be controlled by electrospinning parameters, such as solution concentration, electric voltage and flow rate.

关键词: electrospinning     polycarbonate urethane     process parameter     average diameter     morphology    

Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning

Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 392-400 doi: 10.1007/s11705-011-1202-0

摘要: In this paper, a scaffold, which mimics the morphology and mechanical properties of a native blood vessel is reported. The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector. The tubular scaffolds (inner diameter 4 mm, length 3 cm) are composed of a polyurethane (PU) fibrous outer-layer and a gelatin-heparin fibrous inner-layer. They were fabricated by electrospinning technology, which enables control of the composition, structure, and mechanical properties of the scaffolds. The microstructure, fiber morphology and mechanical properties of the scaffolds were examined by means of scanning electron microscopy (SEM) and tensile tests. The PU/gelatin-heparin tubular scaffolds have a porous structure. The scaffolds achieved a breaking strength (3.7±0.13 MPa) and an elongation at break (110±8%) that are appropriate for artificial blood vessels. When the scaffolds were immersed in water for 1 h, the breaking strength decreased slightly to 2.2±0.3 MPa, but the elongation at break increased to 145±21%. In platelet adhesion tests the gelatin-heparin fibrous scaffolds showed a significant suppression of platelet adhesion. Heparin was released from the scaffolds at a fairly uniform rate during the period of 2 day to 9 day. The scaffolds are expected to mimic the complex matrix structure of native arteries, and to have good biocompatibility as an artificial blood vessel owing to the heparin release.

关键词: electrospinning     artificial blood vessels     scaffold     polyurethane     gelatin     nanofiber     hemocompatibility    

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 249-275 doi: 10.1007/s11705-022-2245-0

摘要: Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.

关键词: electrospinning     heavy metal     adsorption     nanostructure     wastewater    

Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 930-941 doi: 10.1007/s11705-023-2309-9

摘要: Membrane technology for wastewater remediation has aroused wide interest owing to its unique properties and potential applications. However, it remains challenging to explore green, efficient and robust membrane material and technique for complex wastewater treatment. Herein, we proposed using a simple electrospinning and in situ seeding method to fabricate a lignin-based electrospun nanofiber membrane (LENM) decorated with photo-Fenton Ag@MIL-100(Fe) heterojunctions for efficient separation of oil/water emulsions and degradation of organic dye. Thanks to the embedded lignin in LENM, an ultrahigh MIL-100(Fe) loading (53 wt %) with good wettability and high porosity was obtained. As a result, the hybrid Ag@MIL-100(Fe)/LENM exhibited excellent oil/water emulsions separation efficiency (more than 97%) without a compromise of water flux. Moreover, the hybrid membrane showed an excellent dye removal with degradation of 99% methylene blue within 30 min under illumination, which is attributed to a synergy of dye adsorption/enrichment and photo-Fenton catalytic degradation from Ag@MIL-100(Fe). Therefore, the lignin-based photo-Fenton hybrid membrane can lay the foundation for the preparation and application of green, sustainable and versatile membrane materials and technologies for efficient complex wastewater remediation.

关键词: lignin     electrospinning     heterojunctions     photo-Fenton catalysis     wastewater remediation    

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes for high-performance supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 504-515 doi: 10.1007/s11705-022-2260-1

摘要: Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors. However, the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde. Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds. Hence, lignin, phenol, and furfural were used to synthesize bio-based phenolic resins, and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation. Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties. The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78. The activated carbon nanofibers show a uniform diameter, specific surface area up to 1100 m2·g–1, and total pore volume of 0.62 cm3·g–1. The electrode demonstrates a specific capacitance of 238 F·g–1 (0.1 A·g–1) and good rate capability. The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg–1 at 100 W·kg–1 and an excellent capacitance retention of 98% after 10000 cycles. These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.

关键词: lignin     bio-based phenolic resins     electrospinning     activated carbon nanofibers     supercapacitors    

Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering

Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 108-119 doi: 10.1007/s11705-018-1742-7

摘要:

Plants have been used for medicinal purposes for thousands of years but they are still finding new uses in modern times. For example, Elaeagnus angustifolia (EA) is a medicinal herb with antinociceptive, anti-inflammatory, antibacterial and antioxidant properties and it is widely used in the treatment of rheumatoid arthritis and osteoarthritis. EA extract was loaded onto poly(ϵ-caprolactone)-poly(ethylene glycol)-poly(ϵ-caprolactone) (PCL-PEG-PCL/EA) nanofibers and their potential applications for bone tissue engineering were studied. The morphology and chemical properties of the fibers were evaluated using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, contact angle measurements and mechanical tests. All the samples had bead-free morphologies with average diameters ranging from 100 to 200 nm. The response of human cells to the PCL-PEG-PCL/EA nanofibers was evaluated using human dental pulp stem cells (hDPSCs). The hDPSCs had better adhesion and proliferation capacity on the EA loaded nanofibers than on the pristine PCL-PEG-PCL nanofibers. An alizarin red S assay and the alkaline phosphatase activity confirmed that the nanofibrous scaffolds induced osteoblastic performance in the hDPSCs. The quantitative real time polymerase chain reaction results confirmed that the EA loaded nanofibrous scaffolds had significantly upregulated gene expression correlating to osteogenic differentiation. These results suggest that PCL-PEG-PCL/EA nanofibers might have potential applications for bone tissue engineering.

关键词: Elaeagnus angustifolia     scaffold     electrospinning     human dental pulp stem cell     tissue engineering    

Fabrication of scaffolds in tissue engineering: A review

Peng ZHAO, Haibing GU, Haoyang MI, Chengchen RAO, Jianzhong FU, Lih-sheng TURNG

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 107-119 doi: 10.1007/s11465-018-0496-8

摘要:

Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

关键词: tissue engineering     scaffolds     electrospinning     3D printing     molding techniques     conventional methods    

The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams

Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 328-337 doi: 10.1007/s11705-017-1646-y

摘要: Two types of lignin-based carbon fibers were prepared by electrospinning method. The first was activated with Fe O (LCF-Fe), and the second was not activated with Fe O (LCF). Gas phase adsorption isotherms for toluene on LCF-Fe and LCF were studied. The gas phase adsorption isotherm for 0% RH showed LCF-Fe have about 439 mg/g adsorption capacity which was close to that of commercially available activated carbon (500 mg/g). The Dubinin-Radushkevich equation described the isotherm data very well. Competitive adsorption isotherms between water vapor and toluene were measured for their RH from 0 to 80%. The effect of humidity on toluene gas-phase adsorption was predicted by using the Okazaki et al. model. In addition, a constant pattern homogeneous surface diffusion model (CPHSDM) was used to predict the toluene breakthrough curve of continuous flow-packed columns containing LCF-Fe, and its capacity was 412 mg/g. Our study, which included material characterization, adsorption isotherms, kinetics, the impact of humidity and fixed bed performance modeling, demonstrated the suitability of lignin-based carbon fiber for volatile organic compound removal from gas streams.

关键词: lignin     carbon fiber     electrospinning     toluene     humidity    

一种静电纺具有超高分子链取向纳米纤维的通用策略 Article

文显, 熊健, 孙朝阳, 王黎明, 俞建勇, 覃小红

《工程(英文)》 2023年 第29卷 第10期   页码 179-187 doi: 10.1016/j.eng.2022.09.008

摘要:

聚合物分子链取向度是决定纤维机械性质和物理性能的关键结构参数。然而,理解和大幅调控纤维大分子链取向仍面临巨大挑战。本文提出一种新型的静电纺丝方法,通过控制纺丝过程中的电场来有效调节分子链取向。与典型的静电纺丝相比,新型静电纺丝通过将电场施加在圆环上而非针头上来分离控制电场。得益于这一变化,实现了一种新的电场分布,从而产生非单调变化的牵伸作用力。结果表明,聚环氧乙烷(PEO)纳米纤维的大分子链取向得到显著改善,实现了超高红外二向色性比。与此同时,PEO射流细度可有效降低80%左右,纳米纤维直径从约298 nm降低至约114 nm。并且,与普通材料中高取向导致的高结晶度不同,该方法在提高纤维分子链取向度的同时使结晶度从74.9%显著降低至31.7%。这项工作为制备具有优化取向-结晶度特性的先进电纺纳米纤维提供了新的认识。

关键词: 分子链取向     静电纺丝     纳米纤维     电场     聚环氧乙烷    

标题 作者 时间 类型 操作

Electrospinning of polycarbonate urethane biomaterials

Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO

期刊论文

Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning

Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO

期刊论文

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

期刊论文

Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation

期刊论文

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes for high-performance supercapacitors

期刊论文

Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering

Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani

期刊论文

Fabrication of scaffolds in tissue engineering: A review

Peng ZHAO, Haibing GU, Haoyang MI, Chengchen RAO, Jianzhong FU, Lih-sheng TURNG

期刊论文

The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams

Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden

期刊论文

一种静电纺具有超高分子链取向纳米纤维的通用策略

文显, 熊健, 孙朝阳, 王黎明, 俞建勇, 覃小红

期刊论文