Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2021, Volume 16, Issue 3 doi: 10.1007/s11465-021-0636-4

Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme

Received: 2021-01-03 Revised: 2021-06-21 Accepted: 2021-09-24 Available online: 2021-09-24

Next Previous

Abstract

This paper proposes a novel method for the continuum topology optimization of transient vibration problem with maximum dynamic response constraint. An aggregated index in the form of an integral function is presented to cope with the maximum response constraint in the time domain. The density filter solid isotropic material with penalization method combined with threshold projection is developed. The sensitivities of the proposed index with respect to design variables are conducted. To reduce computational cost, the second-order Arnoldi reduction (SOAR) scheme is employed in transient analysis. Influences of aggregate parameter, duration of loading period, interval time, and number of basis vectors in the SOAR scheme on the final designs are discussed through typical examples while unambiguous configuration can be achieved. Through comparison with the corresponding static response from the final designs, the optimized results clearly demonstrate that the transient effects cannot be ignored in structural topology optimization.

Related Research