Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2013, Volume 7, Issue 3 doi: 10.1007/s11705-013-1333-6

Reduction of CeO

1. School of Chemistry, University of St Andrews, KY169ST, St Andrews, Fife, UK; 2. Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

Available online: 2013-09-05

Next Previous

Abstract

Reduction behavior of pure and doped CeO , the multi-phase La Sr CoO ? CeO , La Sr MnO ? CeO , and La Ni Fe O ? CeO composites, was studied under hydrogen containing atmosphere to address issues related to the improvement of electrochemical and catalytic performance of electrodes in fuel cells. The enhanced reduction of cerium oxide was observed initially at 800°C in all composites in spite of the presence of highly reducible transition metal cations that could lead to the increase in surface concentration of oxygen vacancies and generation of the electron enriched surface. Due to continuous reduction of cerium oxide in La Sr CoO ? CeO and La Sr MnO ? CeO (up to 10 h) composites the redox activity of the Ce /Ce pair could be suppressed and additional measures are required for reversible spontaneous regeneration of Ce . After 3 h exposure to H -Ar at 800°C the reduction of cerium oxides and perovskite phases in La Ni Fe O ? CeO composites was diminished. The extent of cerium oxide involvement in the reduction process varies with time, and depends on its initial deviation from oxygen stoichiometry (that results in the larger lattice parameter and the longer pathway for O transport through the fluorite lattice), chemical origin of transition metal cations in the perovskite, and phase diversity in multi-phase composites.

Related Research