Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2013, Volume 7, Issue 3 doi: 10.1007/s11705-013-1337-2

Sustainable H

1. Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072, China; 2. Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA

Available online: 2013-09-05

Next Previous

Abstract

A macro-meso-porous monolithic Ni-based catalyst was prepared via an impregnation route using polystyrene foam as the template and then used in the steam reforming of ethanol to produce a H -rich gas. The Ni/Mg-Al catalyst has a hierarchically macro-meso-porous structure as indicated by photographs and scanning electron microscopy (SEM). The surface area of the catalyst was 230 m ?g and the Ni dispersion was 5.62%. Compared to the pelletized sample that was prepared without a template, the macro-meso-porous Ni/Mg-Al monolith exhibited superior reactivity in terms of H production and also had lower CH yields at 700oC and 800oC. Furthermore, the monolithic catalyst maintained excellent activity and H selectivity after 100-h on-stream at 700 C, as well as good resistance to coking and metal sintering.

Related Research