Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2017, Volume 11, Issue 3 doi: 10.1007/s11705-017-1675-6

Performance monitoring of non-gaussian chemical processes with modes-switching using globality-locality preserving projection

Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

Accepted: 2017-08-11 Available online: 2017-08-23

Next Previous

Abstract

In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methods.

Related Research