Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2012, Volume 6, Issue 3 doi: 10.1007/s11709-012-0140-3

Experimental monitoring of the strengthening construction of a segmental box girder bridge and field testing of external prestressing tendons anchorage

School of Transportation Science and Engineering, Bridge and Tunnel Engineering, Harbin Institute of Technology, Harbin 150090, China

Available online: 2012-09-05

Next Previous

Abstract

Prestressed concrete segmental box girder bridges are composed of short concrete segments that are either precast or cast in situ and then joined together by longitudinally post-tensioning internal, external, or mixed tendons. The objectives of this study are to monitor the construction process of the external prestressing tendons to strengthen the bridge structure and perform a field load test to measure the strain and the deflection of the anchorage devices of the external prestressing tendons to determine the state of these devices after tension forces are applied. The monitoring process of the external prestressing tendons construction includes inspecting the cracks in the diaphragm anchorage and the deviation block devices before the tension forces are applied to the external tendons; measuring the deformation of the steel deviation cross beam during the tension process; measuring the deformation of the box girder after different levels of tension forces are applied; measuring the elongation of the external tendons in each level of the tension; and measuring the natural frequency of the external tendons after the tension process is complete. The results of the monitoring process show that the measured values of the deformation, the elongation, and the natural frequency meet the requirements. Therefore, there is no damage during the construction and the tensioning of the external prestressing tendons. A field load test is performed to the anchorage beam, the steel deviation block devices, and the steel deviation cross beam. The field load test results of the anchorage devices show that the values of the strains, the stresses, and the deflection are less than the respective allowable limit values in the requirements. Therefore, the anchorage devices have sufficient strength, and the working state is good after the tension forces are applied to the external prestressing tendons.

Related Research