Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2021, Volume 15, Issue 5 doi: 10.1007/s11709-021-0771-3

A multiscale material model for heterogeneous liquid droplets in solid soft composites

Department of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, Iran

Received: 2021-07-14 Accepted: 2021-11-10 Available online: 2021-10-15

Next Previous


Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

Related Research