
生物材料在心脏修复和再生中的应用
Application of Biomaterials in Cardiac Repair and Regeneration
Cardiovascular disease is a leading cause of death throughout the world. The demand for new therapeutic interventions is increasing. Although pharmacological and surgical interventions dramatically improve the quality of life of cardiovascular disease patients, cheaper and less invasive approaches are always preferable. Biomaterials, both natural and synthetic, exhibit great potential in cardiac repair and regeneration, either as a carrier for drug delivery or as an extracellular matrix substitute scaffold. In this review, we discuss the current treatment options for several cardiovascular diseases, as well as types of biomaterials that have been investigated as potential therapeutic interventions for said diseases. We especially highlight investigations into the possible use of conductive polymers for correcting ischemic heart disease-induced conduction abnormalities, and the generation of biological pacemakers to improve the conduction pathway in heart block.
Myocardial infarction / Heart regeneration / Biomaterial / Tissue engineering / Stem cell
[1] |
Public Health Agency of Canada [Internet]. Economic burden of illness in Canada, 2005−2008. [2014-06-20]. Available from: http://www.phac-aspc.gc.ca/publicat/ebic-femc/2005-2008/index-eng.php.
|
[2] |
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ,
|
[3] |
Creaser JW, DePasquale EC, Vandenbogaart E, Rourke D, Chaker T, Fonarow GC. Team-based care for outpatients with heart failure. Heart Fail Clin2015; 11(3): 379−405.
|
[4] |
Heidenreich P. Heart failure prevention and team-based interventions. Heart Fail Clin2015; 11(3): 349−58.
|
[5] |
Larsen PM, Teerlink JR. Team-based care for patients hospitalized with heart failure. Heart Fail Clin2015; 11(3): 359−70.
|
[6] |
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med2015; 372(9): 793−5.
|
[7] |
Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP,
|
[8] |
Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S,
|
[9] |
Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin ZJ, Xu XP, Needle S,
|
[10] |
Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials2011; 32(5): 1280−90.
|
[11] |
Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ Res2011; 109(8): 910−22.
|
[12] |
Cheng K, Malliaras K, Shen DL, Tseliou E, Ionta V, Smith J,
|
[13] |
Ungerleider JL, Christman KL. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med2014; 3(9): 1090−9.
|
[14] |
Shen DL, Wang XF, Zhang L, Zhao XY, Li JY, Cheng K,
|
[15] |
de Zwaan C, Daemen MJ, Hermens WT. Mechanisms of cell death in acute myocardial infarction: pathophysiological implications for treatment. Neth Heart J. 2001; 9(1): 30−44.
|
[16] |
O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA,
|
[17] |
Schächinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J2006; 27(23): 2775−83.
|
[18] |
Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C,
|
[19] |
Caspi O, Huber I, Habib M, Arbel G, Gepstein A, Yankelson L,
|
[20] |
Laflamme MA, Chen KY, Naumova A, Muskheli V, Fugate JA, Dupras SK,
|
[21] |
Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspumer H, Trinquart L,
|
[22] |
Menasché P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis2007; 50(1): 7−17.
|
[23] |
Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA,
|
[24] |
Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E,
|
[25] |
Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S,
|
[26] |
Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY,
|
[27] |
Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ,
|
[28] |
Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V,
|
[29] |
Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature2008; 451(7181): 937−42.
|
[30] |
Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET,
|
[31] |
Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N,
|
[32] |
Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P,
|
[33] |
Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation2009; 119(13): 1814−23.
|
[34] |
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science2012; 336(6085): 1124−8.
|
[35] |
Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release2011; 155(2): 193−9.
|
[36] |
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto MJ. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release2015; 203: 23−38.
|
[37] |
Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol2004; 15(5): 430−4.
|
[38] |
O’Brien FJ. Biomaterials & Scaffolds for tissue engineering. Mater Today2011; 14(3): 88−95.
|
[39] |
Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA,
|
[40] |
Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials2004; 25(9): 1639−47.
|
[41] |
Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I,
|
[42] |
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev2016; 96: 54−76.
|
[43] |
Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F,
|
[44] |
Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng2004; 10(3−4): 403−9.
|
[45] |
Chang MY, Yang YJ, Chang CH, Tang AC, Liao WY, Cheng FY,
|
[46] |
Meng X, Stout DA, Sun L, Beingessner RL, Fenniri H, Webster TJ. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications. J Biomed Mater Res A2013; 101(4): 1095−102.
|
[47] |
Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci2013; 13(9): 1119−34.
|
[48] |
Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther2012; 10(8): 1039−49.
|
[49] |
Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A,
|
[50] |
Frederick JR, Fitzpatrick JR 3rd, McCormick RC, Harris DA, Kim AY, Muenzer JR,
|
[51] |
Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H,
|
[52] |
Song K, Qiao M, Liu T, Jiang B, Macedo HM, Ma X,
|
[53] |
Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials2006; 27(3): 388−96.
|
[54] |
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev2010; 62(1): 83−99.
|
[55] |
Miklas JW, Dallabrida SM, Reis LA, Ismail N, Rupnick M, Radisic M. QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels. PLoS ONE2013; 8(8): e72956.
|
[56] |
Chi NH, Yang MC, Chung TW, Chou NK, Wang SS. Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr Polym2013; 92(1): 591−7.
|
[57] |
Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev1998; 31(3): 267−85.
|
[58] |
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci2012; 37(1): 106−26.
|
[59] |
Deng B, Shen L, Wu Y, Shen Y, Ding X, Lu S,
|
[60] |
Terashima M, Fujiwara S, Yaginuma GY, Takizawa K, Kaneko U, Meguro T. Outcome of percutaneous intrapericardial fibrin-glue injection therapy for left ventricular free wall rupture secondary to acute myocardial infarction. Am J Cardiol2008; 101(4): 419−21.
|
[61] |
Iemura J, Oku H, Otaki M, Kitayama H, Inoue T, Kaneda T. Surgical strategy for left ventricular free wall rupture after acute myocardial infarction. Ann Thorac Surg2001; 71(1): 201−4.
|
[62] |
Okonogi T, Otsuka Y, Saito T. Repaired left ventricular free wall rupture after acute myocardial infarction by percutaneous intrapericardial fibrin-glue injection therapy. J Invasive Cardiol2013; 25(9): E186−7.
|
[63] |
Mukherjee S, Venugopal JR, Ravichandran R, Ramakrishna S, Raghunath M. Evaluation of the biocompatibility of PLACL/collagen nanostructured matrices with cardiomyocytes as a model for the regeneration of infarcted myocardium. Adv Funct Mater2011; 21(12): 2291−300.
|
[64] |
Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules2014; 15(2): 635−43.
|
[65] |
Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z,
|
[66] |
French KM, Somasuntharam I, Davis ME. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv Drug Deliv Rev2016; 96: 40−53.
|
[67] |
Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD,
|
[68] |
Boopathy AV, Davis ME. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Methods Mol Bio2014; 1141: 159−64.
|
[69] |
Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T,
|
[70] |
Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest2006; 116(1): 237−48.
|
[71] |
McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A2003; 66(3): 586−95.
|
[72] |
Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M,
|
[73] |
Mann DL, Lee RJ, Coats AJS, Neagoe G, Dragomir D, Pusineri E,
|
[74] |
Ghuran AV, Camm AJ. Ischaemic heart disease presenting as arrhythmias. Br Med Bull2001; 59(1): 193−210.
|
[75] |
Benito B, Josephson ME. Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol (Engl Ed)2012; 65(10): 939−55. [English Version]
|
[76] |
Myerburg RJ, Junttila MJ. Sudden cardiac death caused by coronary heart disease. Circulation2012; 125(8): 1043−52.
|
[77] |
Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G,
|
[78] |
Yousuf O, Chrispin J, Tomaselli GF, Berger RD. Clinical management and prevention of sudden cardiac death. Circ Res2015; 116(12): 2020−40.
|
[79] |
Khan IA. Clinical and therapeutic aspects of congenital and acquired long QT syndrome. Am J Med2002; 112(1): 58−66.
|
[80] |
Noakes TD, Higginson L, Opie LH. Physical training increases ventricular fibrillation thresholds of isolated rat hearts during normoxia, hypoxia and regional ischemia. Circulation1983; 67(1): 24−30.
|
[81] |
Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation2002; 106(14): 1800−5.
|
[82] |
The Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med1981; 304(14): 801−7.
|
[83] |
Chen ZM, Pan HC, Chen YP, Peto R, Collins R, Jiang LX,
|
[84] |
Goldenberg I, Gillespie J, Moss AJ, Hall WJ, Klein H, McNitt S,
|
[85] |
Dorian P, Hohnloser SH, Thorpe KE, Roberts RS, Kuck KH, Gent M,
|
[86] |
Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed)2012; 65(7): 656−67. [English Version]
|
[87] |
Laske T, Iaizzo P. The cardiac conduction system. In: Iaizzo PA, editors Handbook of cardiac anatomy, physiology, and devices. Totowa: Humana Press; 2005. p. 123−36.
|
[88] |
Finsterer J, Stöllberger C. Cardiac involvement in Becker muscular dystrophy. Can J Cardiol2008; 24(10): 786−92.
|
[89] |
Altekin RE, Yanikoglu A, Ucar M, Ermis C. Complete AV block and cardiac syncope in a patient with Duchenne muscular dystrophy. J Cardiol Cases2011; 3(2): e68−70.
|
[90] |
Lee JC, Seiler J, Blankstein R, Padera RF, Baughman KL, Tedrow UB. Images in cardiovascular medicine. Cardiac sarcoidosis presenting as heart block. Circulation2009; 120(15): 1550−1.
|
[91] |
Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc2012; 1(2): e000364.
|
[92] |
Singh SM, FitzGerald G, Yan AT, Brieger D, Fox KA, López-Sendón J,
|
[93] |
Hreybe H, Saba S. Location of acute myocardial infarction and associated arrhythmias and outcome. Clin Cardiol2009; 32(5): 274−7.
|
[94] |
Cho SW, Kang YJ, Kim TH, Cho SK, Hwang MW, Chang W,
|
[95] |
Schaffer MS, Silka MJ, Ross BA, Kugler JD; Pediatric Electrophysiology Society. Inadvertent atrioventricular block during radiofrequency catheter ablation. Results of the Pediatric Radiofrequency Ablation Registry. Circulation1996; 94(12): 3214−20.
|
[96] |
Belhassen B, Glick A, Rosso R, Michowitz Y, Viskin S. Atrioventricular block during radiofrequency catheter ablation of atrial flutter: incidence, mechanism, and clinical implications. Europace2011; 13(7): 1009−14.
|
[97] |
Rardon DP, Miles WM, Zipes DP. Atrioventricular block and dissociation. In: Zipes DP, Jalife J, editors Cardiac electrophysiology: from cells to bedside. 2nd ed. Philadelphia: WB Saunders; 1995. p. 485−9.
|
[98] |
Issa Z, Miller JM, Zipes DP. Atrioventricular conduction abnormalities. In: Clinical arrhythmology and electrophysiology: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders; 2008. p. 127−42.
|
[99] |
Barold SS, Hayes DL. Second-degree atrioventricular block: a reappraisal. Mayo Clin Proc2001; 76(1): 44−57.
|
[100] |
Barold SS, Ilercil A, Leonelli F, Herweg B. First-degree atrioventricular block. Clinical manifestations, indications for pacing, pacemaker management & consequences during cardiac resynchronization. J Interv Card Electrophysiol2006; 17(2): 139−52.
|
[101] |
Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA,
|
[102] |
Stevenson WG, John RM. Ventricular arrhythmias in patients with implanted defibrillators. Circulation2011; 124(16): e411−4.
|
[103] |
Miller JS. The 2000 Nobel Prize in Chemistry−a personal accolade. Chemphyschem2000; 1(4): 229−30.
|
[104] |
Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater2002; 12(1): 33−7.
|
[105] |
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater2014; 10(6): 2341−53.
|
[106] |
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials2010; 31(10): 2701−16.
|
[107] |
Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R,
|
[108] |
Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y,
|
[109] |
George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R,
|
[110] |
Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci2010; 10(12): 1456−64.
|
[111] |
Lundin V, Herland A, Berggren M, Jager EW, Teixeira AI. Control of neural stem cell survival by electroactive polymer substrates. PLoS ONE2011; 6(4): e18624.
|
[112] |
Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A2011; 99(3): 376−85.
|
[113] |
Gelmi A, Zhang JB, Cieslar-Pobuda A, Ljunngren MK, Los MJ, Rafat M,
|
[114] |
Mihardja SS, Sievers RE, Lee RJ. The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials2008; 29(31): 4205−10.
|
[115] |
Witte KK, Pipes RR, Nanthakumar K, Parker JD. Biventricular pacemaker upgrade in previously paced heart failure patients−improvements in ventricular dyssynchrony. J Card Fail2006; 12(3): 199−204.
|
[116] |
Cho HC, Marbán E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ Res2010; 106(4): 674−85.
|
[117] |
Berul CI, Cecchin F; American Heart Association; American College of Cardiology. Indications and techniques of pediatric cardiac pacing. Expert Rev Cardiovasc Ther2003; 1(2): 165−76.
|
[118] |
Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological to electronic ... to biological? Circ Arrhythm Electrophysiol2008; 1(1): 54−61.
|
[119] |
Munshi NV, Olson EN. Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science2014; 345(6194): 268−9.
|
[120] |
Rosen MR, Robinson RB, Brink PR, Cohen IS. The road to biological pacing. Nat Rev Cardiol2011; 8(11): 656−6.
|
[121] |
Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV,
|
[122] |
Proulx MK, Carey SP, Ditroia LM, Jones CM, Fakharzadeh M, Guyette JP,
|
[123] |
Suarez SL, Rane AA, Muñoz A, Wright AT, Zhang SX, Braden RL,
|
[124] |
Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med2016; 10(1): 11−28.
|
[125] |
Griffith LG, Naughton G. Tissue engineering−current challenges and expanding opportunities. Science2002; 295(5557): 1009−14.
|
[126] |
Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT,
|
/
〈 |
|
〉 |