
中国生态文明的基础设施
Infrastructure for China’s Ecologically Balanced Civilization
China’s green investment needs up to 2020 are ¥1.7 trillion—2.9 trillion CNY ($274 billion—468 billion USD) per year. Estimates of financing requirements are provided for multiple sectors, including sustainable energy, infrastructure (including for environmental protection), environmental remediation, industrial pollution control, energy and water efficiency, and green products. The context to China’s green financing is discussed, covering urbanization, climate change, interactions between infrastructure sectors, and the transformation of industry. Much of the infrastructure financing will occur in cities, with a focus on equity, environmental protection, and quality of life under the National New-Type Urbanization Plan (2014—2020). China has implemented many successful policies in the building sector, but there is still considerable scope for improvement in the energy efficiency of Chinese buildings. China is currently pursuing low-carbon growth strategies that are consistent with its overall environmental and quality-of-life objectives. Beyond 2020, China’s future as an ecologically balanced civilization will rest on the implementation of a central infrastructure policy: China 2050 High Renewable Energy Penetration Scenario and Roadmap Study. As exemplified by the Circular Economy Development Strategy and Near-Term Action Plan, an essential part of China’s green industrial transformation involves engineering systems that conserve materials, thereby reducing or even eliminating wastes. To better understand changes to China’s economy under its green transformation and to unlock large potential sources of finance, it is necessary to undertake a fuller examination of all of China’s infrastructure sectors, particularly freight rail infrastructure and ports. Large investments are required to clean up a legacy of environmental contamination of soil and groundwater and to reduce industrial pollution. Transformation of the power sector away from coal will avoid some industrial treatment costs. The contribution of engineers in planning, designing, and constructing China’s new green infrastructure will be furthered by understanding the broad policy context and the interactions between land use, infrastructure, and environmental performance.
Sustainable engineering / Green growth / Industrial ecology / Low-carbon development / Green finance
[1] |
Kennedy CA, Corfee-Morlot J. Mobilising investment in low-carbon, climate-resilient infrastructure. OECD environment working papers, No. 46. Paris: OECD Publishing; 2012.
CrossRef
ADS
Google scholar
|
[2] |
Kennedy CA, Corfee-Morlot J. Past performance and future needs for low carbon climate resilient infrastructure-an investment perspective. Energ Policy 2013;59(C):773–83.
CrossRef
ADS
Google scholar
|
[3] |
National Railway Administration of the People’s Republic of China. Railway statistical bulletin 2013 [Internet]. 2014Apr 10 [cited 2015 Sep 16]. Available from: http://www.moc.gov.cn/tongjishuju/tielu/201510/t20151016_1906139.html. Chinese.
|
[4] |
International Renewable Energy Agency. Renewable energy prospects: China, REmap 2030 analysis [Internet]. 2014 Nov [cited 2015 Sep 16]. Available from: http://www.irena.org/remap/IRENA_REmap_China_report_2014.pdf.
|
[5] |
China Council for International Cooperation on Environment and Development. Demand for green finance. In: Green finance reform and green transformation. Task force report. CCICED; 2015 Nov. Chinese.
|
[6] |
Yuan Z, Bi J, Moriguichi Y. The circular economy: a new development strategy in China. J Ind Ecol 2006;10(1-2):4–8.
CrossRef
ADS
Google scholar
|
[7] |
Geng Y, Sarkis J, Ultiati S, Zhang P. Measuring China’s circular economy. Science 2013;339(6127):1526–7.
CrossRef
ADS
Google scholar
|
[8] |
OECD. OECD urban policy reviews: China 2015. Paris: OECD Publishing; 2015.
|
[9] |
Shi F, Huang T, Tanikawa H, Han J, Hashimoto S, Moriguchi Y. Toward a low carbon dematerialization society. J Ind Ecol 2012;16(4):493–505.
CrossRef
ADS
Google scholar
|
[10] |
Corfee-Morlot J, Marchal V, Kauffmann C, Kennedy C, Stewart F, Kaminker C,
CrossRef
ADS
Google scholar
|
[11] |
Bai X, Shi P, Liu Y. Society: realizing China’s urban dream. Nature 2014;509 (7499): 158–60.
CrossRef
ADS
Google scholar
|
[12] |
Wang Q. Effects of urbanisation on energy consumption in China. Energ Policy 2014;65(3):332–9.
CrossRef
ADS
Google scholar
|
[13] |
Kennedy CA, Stewart I, Facchini A, Cersosimo I, Mele R, Chen B,
CrossRef
ADS
Google scholar
|
[14] |
Vernay A-L, Mulder KF, Kamp LM, De Bruijn H. Exploring the socio-technical dynamics of systems integration-the case of sewage gas for transport in Stockholm, Sweden. J Cleaner Prod 2013;44:190–99.
CrossRef
ADS
Google scholar
|
[15] |
Van Berkel R, Fujita T, Hashimoto S, Geng Y. Industrial and urban symbiosis in Japan: analysis of the Eco-Town program 1997 2006. J Environ Manage 2009;90(3):1544–56.
CrossRef
ADS
Google scholar
|
[16] |
Van Berkel R, Fujita T, Hashimoto S, Fujii M. Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environ Sci Technol 2009;43(5):1271–81.
CrossRef
ADS
Google scholar
|
[17] |
Li J, Shui B. A comprehensive analysis of building energy efficiency policies in China: status quo and development perspective. J Cleaner Prod 2015;90:326–44.
CrossRef
ADS
Google scholar
|
[18] |
IEA. Transition to sustainable buildings: strategies and opportunities to 2050. Paris: OECD Publishing; 2013.
|
[19] |
Li J, Colombier M. Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector. Climatic Change 2011;107(3):567–91.
CrossRef
ADS
Google scholar
|
[20] |
Wu L, Huo H. Energy efficiency achievements in China’s industrial and transport sectors: how do they rate? Energ Policy 2014;73(C):38–46.
CrossRef
ADS
Google scholar
|
[21] |
Huo H, Wang M, Zhang X, He K, Gong H, Jiang K,
CrossRef
ADS
Google scholar
|
[22] |
Lyu C, Ou X, Zhang X. China automotive energy consumption and greenhouse gas emissions outlook to 2050. Mitigation Adapt Strategies Glob Change 2015;20(5):627–50.
CrossRef
ADS
Google scholar
|
[23] |
Liu W, Lund H, Mathiesen BV. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development. Energ Policy 2013;58(9):347–57.
CrossRef
ADS
Google scholar
|
[24] |
Wang Q. China energy databook. Beijing: Tsinghua University; 2013.
|
[25] |
Sun N. The study on indicator system of urban rail transit and energy conservation strategy. 2011.
|
[26] |
Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change 2015;5(4):329–32.
CrossRef
ADS
Google scholar
|
[27] |
Lin B, Ouyang X. Energy demand in China: comparison of characteristics between the US and China in rapid urbanization stage. Energ Convers Manage 2014;79:128–39.
CrossRef
ADS
Google scholar
|
[28] |
Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ 2008;42(1):1–42.
CrossRef
ADS
Google scholar
|
[29] |
Zhang X, Hu H, Zhang R, Deng S. Interactions between China’s economy, energy and the air emissions and their policy implications. Renew Sust Energ Rev 2014;38(C):62438.
|
[30] |
World Bank. World development indicators [Internet]. [cited 2015 Sep 15]. Available from: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators.
|
[31] |
Zhang B, Chen GQ. Methane emissions by Chinese economy: inventory and embodiment analysis. Energ Policy 2010;38(8):4304–16.
CrossRef
ADS
Google scholar
|
[32] |
National Development and Reform Commission, Department of Climate Change. The People’s Republic of China second national communication on climate change. Beijing: China Economy Publishing House; 2013. Chinese.
|
[33] |
Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI,
CrossRef
ADS
Google scholar
|
[34] |
Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW. Trends in global CO2 emissions: 2015 report. The Hague: PBL Netherlands Environmental Assessment Agency; 2015 Nov. Report No.: JRC98184.
|
[35] |
IEA. International energy agency online statistics (country indicators for China) [Internet]. [cited 2016 Jun 26]. Available from: http://www.iea.org/statistics/statisticssearch/.
|
[36] |
Kennedy CA. Key threshold for electricity emissions. Nat Clim Change 2015;5(3):179–81.
CrossRef
ADS
Google scholar
|
[37] |
IEA. World energy outlook 2014. Paris: OECD Publishing; 2014.
|
[38] |
Teng F, Liu Q, Gu A, Yang X, Chen Y, Tian C,
|
[39] |
Energy Research Institute of the National Development and Reform Commission. China 2050 high renewable energy penetration scenario and roadmap study. 2015 Apr.
|
[40] |
Pasquier SB, editor. Energy efficiency series-saving electricity in a hurry: update 2011 information paper. Paris: IEA OECD Publishing; 2011.
|
[41] |
Château J, Magn¨¦ B, Cozzi L. Economic implications of the IEA efficient world scenario. OECD environment working papers, No. 64. Paris: OECD Publishing; 2014.
CrossRef
ADS
Google scholar
|
[42] |
IEA. Energy efficiency market report 2013. Paris: OECD Publishing; 2013.
|
[43] |
IEA. Energy efficiency market report 2014. Paris: OECD Publishing; 2014.
|
[44] |
Liu W, Lund H, Mathiesen BV, Zhang X. Potential of renewable energy systems in China. Appl Energ 2011;88(2):518–25.
CrossRef
ADS
Google scholar
|
[45] |
Qi Z, Yang J. China implements radical railway reform. Int Rail J 2013;53(8): 18–20,22.
|
[46] |
Mou D, Li Z. A spatial analysis of China’s coal flow. Energ Policy 2012;48:358–68.
CrossRef
ADS
Google scholar
|
[47] |
McNerney J, Farmer JD, Trancik JE. Historical costs of coal-fired electricity and implications for the future. Energ Policy 2011;39(6):3042–54.
CrossRef
ADS
Google scholar
|
[48] |
Rutkowski R. Rebalancing China’s railway sector [Internet]. 2013 Aug 29 [cited 2015 Sep 15]. Available from: https://piie.com/blogs/china-economic-watch/rebalancing-chinas-railway-sector.
|
[49] |
IEA. Efficiency of coal power in China. Paris: OECD Publishing; 2014.
|
[50] |
Wang Y, Sun T. Life cycle assessment of CO2 emissions from wind power plants: methodology and case studies. Renew Energ 2012; 43:30–6.
CrossRef
ADS
Google scholar
|
[51] |
Chen B, Chen S. Urban metabolism and nexus. Ecol Inform 2014;26:1–2.
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |