微生物组分析技术的发展趋势:从单细胞功能成像到菌群大数据

工程(英文) ›› 2017, Vol. 3 ›› Issue (1) : 66-70.

PDF(813 KB)
PDF(813 KB)
工程(英文) ›› 2017, Vol. 3 ›› Issue (1) : 66-70. DOI: 10.1016/J.ENG.2017.01.020
研究论文
Research

微生物组分析技术的发展趋势:从单细胞功能成像到菌群大数据

作者信息 +

Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data

Author information +
History +

Abstract

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Keywords

Microbiome / Methoddevelopment / Single-cell analysis / Big data / China Microbiome Initiative

引用本文

导出引用
. . Engineering. 2017, 3(1): 66-70 https://doi.org/10.1016/J.ENG.2017.01.020

参考文献

[1]
Dubilier N, McFall-Ngai M, Zhao L. Microbiology: create a global microbiome effort. Nature 2015;526(7575):631–4.
CrossRef ADS Google scholar
[2]
Bouchie A. White House unveils National Microbiome Initiative. Nat Biotechnol 2016;34(6):580.
CrossRef ADS Google scholar
[3]
Blaser MJ, Cardon ZG,Cho MK, Dangl JL, Donohue TJ, Green JL, et al. Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. MBio 2016;7(3):e00714–16.
CrossRef ADS Google scholar
[4]
Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, et alLabel-free, rapid and quantitative phenotyping of stress response in E. coli via Ramanome. Sci Rep 2016;6:34359.
CrossRef ADS Google scholar
[5]
Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, et al. Raman activated cell ejection for isolation of single cells. Anal Chem 2013;85(22):10697–701.
CrossRef ADS Google scholar
[6]
Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA 2015;112(2):E194–203.
CrossRef ADS Google scholar
[7]
Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 2014;7(1):58.
CrossRef ADS Google scholar
[8]
Ji Y, He Y, Cui Y, Wang T, Wang Y, Li Y, et al. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 2014;9(12):1512–8.
CrossRef ADS Google scholar
[9]
Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou NY, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem 2016;88(19):9443–50.
CrossRef ADS Google scholar
[10]
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174–80.
CrossRef ADS Google scholar
[11]
Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166(5):1103–16.
CrossRef ADS Google scholar
[12]
Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 2013;41(1):e3.
CrossRef ADS Google scholar
[13]
Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 2016;44(10):e99.
CrossRef ADS Google scholar
[14]
Peng G, Ji P, Zhao F. A novel codon-based de Bruijn graph algorithm for gene construction from unassembled transcriptomes. Genome Biol 2016;17(1):232.
CrossRef ADS Google scholar
[15]
Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 2017;8:14306.
CrossRef ADS Google scholar
[16]
Zhou Q, Su X, Wang A, Xu J, Ning K. QC-Chain: fast and holistic quality control method for next-generation sequencing data. PLoS One 2013;8(4):e60234.
CrossRef ADS Google scholar
[17]
Su X, Xu J, Ning K. Meta-Storms: efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data. Bioinformatics 2012;28(19):2493–501.
CrossRef ADS Google scholar
[18]
Su X, Wang X, Jing G, Ning K. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU. Bioinformatics 2014;30(7):1031–3.
CrossRef ADS Google scholar
[19]
Su X, Hu J, Huang S, Ning K. Rapid comparison and correlation analysis among massive number of microbial community samples based on MDV data model. Sci Rep 2014;4:6393.
CrossRef ADS Google scholar
[20]
Song B, Su X, Xu J, Ning K. MetaSee: an interactive and extendable visualization toolbox for metagenomic sample analysis and comparison. PLoS One 2012;7(11):e48998.
CrossRef ADS Google scholar
[21]
Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 2014;9(5):1038–48.
CrossRef ADS Google scholar
[22]
Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 2015;87(4):2282–9.
CrossRef ADS Google scholar
[23]
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, et al. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015;140(18):6163–74. Erratum in: Analyst 2015;140(19):6758.
CrossRef ADS Google scholar
[24]
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013;499(7459):431–7.
CrossRef ADS Google scholar
[25]
Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 2012;6(9):1715–27.
CrossRef ADS Google scholar
[26]
Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014;15(9):577–84.
CrossRef ADS Google scholar
[27]
Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 2015;4:e08490.
CrossRef ADS Google scholar
[28]
Tang HW, Yang XB, Kirkham J, Smith DA. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal Chem 2007;79(10):3646–53.
CrossRef ADS Google scholar
[29]
Li M, Canniffe DP, Jackson PJ, Davison PA, FitzGerald S, Dickman MJ, et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 2012;6(4):875–85.
CrossRef ADS Google scholar
[30]
McEwen GD, Wu Y, Tang M, Qi X, Xiao Z, Baker SM, et al. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy. Analyst 2013;138(3):787–97.
CrossRef ADS Google scholar
[31]
Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Anal Bioanal Chem 2010;398(1):477–87.
CrossRef ADS Google scholar
[32]
de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 2014;9(8):e105585.
CrossRef ADS Google scholar
[33]
Zhang Q, Wang T, Zhou Q, Zhang P, Gong Y, Gou H, et al. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep 2017;7:41192.
CrossRef ADS Google scholar
[34]
Xu P, Zheng X, Tao Y, Du W. Cross-interface emulsification for generating size-tunable droplets. Anal Chem 2016;88(6):3171–7. <DOI OutputMedium="All"/>10.1021/acs.analchem.5b04510.
CrossRef ADS Google scholar
[35]
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016;533(7604):543–6.
CrossRef ADS Google scholar
[36]
Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 2016;8(1):72.
CrossRef ADS Google scholar
[37]
Boedicker JQ, Li L, Kline TR, Ismagilov RF. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 2008;8(8):1265–72.
CrossRef ADS Google scholar
[38]
Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 2011;6(3):260–6.
CrossRef ADS Google scholar
[39]
Jiang CY, Dong L, Zhao JK, Hu X, Shen C, Qiao Y, et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 2016;82(7):2210–8.
CrossRef ADS Google scholar
[40]
Glass EM, Wilkening J, Wilke A, Antonopoulos S, Meyer F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010;2010(1):pdb.prot5368.
[41]
Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for metagenomics. PLoS Biol 2007;5(3):e75.
CrossRef ADS Google scholar
[42]
Shah N, Tang H, Doak TG, Ye Y. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput 2011;16:165–76.
[43]
Mitra S, Stärk M, Huson DH. Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 2011;12(Suppl 3):S17.
CrossRef ADS Google scholar
[44]
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75(23):7537–41.
CrossRef ADS Google scholar
[45]
Lozupone C, Knight R.UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71(12):8228–35.
CrossRef ADS Google scholar
[46]
Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 2010;4(1):17–27.
CrossRef ADS Google scholar
[47]
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–6.
CrossRef ADS Google scholar
[48]
Su X, Xu J, Ning K. Parallel-META: efficient metagenomic data analysis based on high-performance computation. BMC Syst Biol 2012;6(Suppl 1):S16.
CrossRef ADS Google scholar
[49]
Su X, Pan W, Song B, Xu J, Ning K. Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS One 2014;9(3):e89323.
CrossRef ADS Google scholar
[50]
Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci Rep 2017;7:40371.
CrossRef ADS Google scholar
[51]
Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J 2014;8(9):1768–80.
CrossRef ADS Google scholar
[52]
Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 2015;18(3):296–306.
CrossRef ADS Google scholar
[53]
Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 2016;6:20602.
CrossRef ADS Google scholar
[54]
Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trend Microbiol .Epub 2017 Jan 11.

Acknowledgements

We are grateful to the support from the National Natural Science Foundation of China (NSFC) (31425002, 91231205, 81430011, 61303161, 31470220, and 31327001), and the Frontier Science Research Program, the Soil-microbe System Function and Regulation Program, and the Science and Technology Service Network Initiative (STS) from the Chinese Academy of Sciences (CAS).

Compliance with ethics guidelines

Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, and Rob Knight declare that they have no conflict of interest or financial conflicts to disclose.

版权

2017 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/