大规模培养光合生物的光生物反应器设计

工程(英文) ›› 2017, Vol. 3 ›› Issue (3) : 318-329.

PDF(1481 KB)
PDF(1481 KB)
工程(英文) ›› 2017, Vol. 3 ›› Issue (3) : 318-329. DOI: 10.1016/J.ENG.2017.03.020
研究论文
Research

大规模培养光合生物的光生物反应器设计

作者信息 +

Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms

Author information +
History +

Abstract

Photosynthetic microorganisms are important bioresources for producing desirable and environmentally benign products, and photobioreactors (PBRs) play important roles in these processes. Designing PBRs for photocatalysis is still challenging at present, and most reactors are designed and scaled up using semi-empirical approaches. No appropriate types of PBRs are available for mass cultivation due to the reactors’ high capital and operating costs and short lifespan, which are mainly due to a current lack of deep understanding of the coupling of light, hydrodynamics, mass transfer, and cell growth in efficient reactor design. This review provides a critical overview of the key parameters that influence the performance of the PBRs, including light, mixing, mass transfer, temperature, pH, and capital and operating costs. The lifespan and the costs of cleaning and temperature control are also emphasized for commercial exploitation. Four types of PBRs—tubular, plastic bag, column airlift, and flat-panel airlift reactors are recommended for large-scale operations. In addition, this paper elaborates the modeling of PBRs using the tools of computational fluid dynamics for rational design. It also analyzes the difficulties in the numerical simulation, and presents the prospect for mechanism-based models.

Keywords

Photobioreactor / Solar energy / Photosynthesis / Hydrodynamics / Flashing-light effect

引用本文

导出引用
. . Engineering. 2017, 3(3): 318-329 https://doi.org/10.1016/J.ENG.2017.03.020

参考文献

[1]
Knuckey RM, Brown MR, Robert R, Frampton DMF. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 2006;35(3):300–13.
CrossRef ADS Google scholar
[2]
Takache H, Pruvost J, Marec H. Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtiiin conditions representative of photobioreactor cultivation. Algal Res 2015;8:192–204.
CrossRef ADS Google scholar
[3]
Shi XM, Chen F.High-yield production of lutein by the green microalga Chlorella protothecoidesin heterotrophic fed-batch culture. Biotechnol Prog 2002;18(4):723–7.
CrossRef ADS Google scholar
[4]
Solimeno A, Samsó R, Uggetti E, Sialve B, Steyer JP, Gabarró A, et al.New mechanistic model to simulate microalgae growth. Algal Res 2015;12:350–8.
CrossRef ADS Google scholar
[5]
Takache H, Christophe G, Cornet JF, Pruvost J. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtiiin two different geometries of photobioreactors. Biotechnol Prog 2010;26(2):431–40.
[6]
Yan N, Fan C, Chen Y, Hu Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci 2016;17(6):962.
CrossRef ADS Google scholar
[7]
Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl Microbiol Biotechnol 2007;74(6):1163–74.
CrossRef ADS Google scholar
[8]
Wang B, Lan CQ. Microalgae for biofuel production and CO2 sequestration. Hauppauge: Nova Science Publishers; 2010.
[9]
Wang B, Lan CQ. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 2011;102(10):5639–44.
CrossRef ADS Google scholar
[10]
Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae. Bioresour Technol 2015;187:144–8.
CrossRef ADS Google scholar
[11]
Batan LY, Graff GD, Bradley TH. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour Technol 2016;219:45–52.
CrossRef ADS Google scholar
[12]
Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, et al.Biofuel production: Challenges and opportunities. Int J Hydrogen Energy 2016;42(12):8450–61.
CrossRef ADS Google scholar
[13]
Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 2012;30(4):904–12.
CrossRef ADS Google scholar
[14]
Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI. Review: Biofuel production from plant and algal biomass. Int J Hydrogen Energy 2016;41(39):17257–73.
CrossRef ADS Google scholar
[15]
Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 2014;6(Part A):78–85.
[16]
Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 2009;9(3):165–77.
CrossRef ADS Google scholar
[17]
Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Hydrobiologia 2004;512(1):33–7.
CrossRef ADS Google scholar
[18]
Huang Q, Liu T, Yang J, Yao L, Gao L. Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors. Chem Eng Sci 2011;66(17):3930–40.
CrossRef ADS Google scholar
[19]
Oncel S, Vardar Sukan F. Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresour Technol 2008;99(11):4755–60.
CrossRef ADS Google scholar
[20]
Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 2001;92(2):89–94.
CrossRef ADS Google scholar
[21]
Ogbonna J, Ichige E, Tanaka H. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 2002;58(4):532–8.
CrossRef ADS Google scholar
[22]
Zittelli GC, Rodolfi L, Tredici MR. Mass cultivation of Nannochloropsissp. in annular reactors. J Appl Phycol 2003;15(2):107–14.
CrossRef ADS Google scholar
[23]
Ranjbar R, Inoue R, Katsuda T, Yamaji H, Katoh S. High efficiency production of astaxanthin in an airlift photobioreactor. J Biosci Bioeng 2008;106(2):204–7.
CrossRef ADS Google scholar
[24]
Rubio FC, Fernández FGA, Pérez JAS, Camacho FG, Grima EM. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 1999;62(1):71–86.
CrossRef ADS Google scholar
[25]
Ugwu C, Ogbonna J, Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 2002;58(5):600–7.
CrossRef ADS Google scholar
[26]
Harker M, Tsavalos AJ, Young AJ. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng 1996;82(2):113–8.
CrossRef ADS Google scholar
[27]
Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 2007;98(2):288–95.
CrossRef ADS Google scholar
[28]
Hu Q, Guterman H, Richmond A. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 1996;51(1):51–60.
CrossRef ADS Google scholar
[29]
Zhang T. Dynamics of fluid and light intensity in mechanically stirred photobioreactor. J Biotechnol 2013;168(1):107–16.
CrossRef ADS Google scholar
[30]
Ogbonna JC, Soejima T, Tanaka H. An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 1999;70(1–3):289–97.
CrossRef ADS Google scholar
[31]
Richmond A, Boussiba S, Vonshak A, Kopel R. A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 1993;5(3):327–32.
CrossRef ADS Google scholar
[32]
Hall DO, Acién Fernández FG, Guerrero EC, Rao KK, Grima EM. Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 2003;82(1):62–73.
CrossRef ADS Google scholar
[33]
Contreras A, García F, Molina E, Merchuk JC. Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 1998;60(3):317–25.
CrossRef ADS Google scholar
[34]
Watanabe Y, Saiki H. Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manage 1997;38(Suppl):S499–503.
CrossRef ADS Google scholar
[35]
Pruvost J, Pottier L, Legrand J. Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 2006;61(14):4476–89.
CrossRef ADS Google scholar
[36]
Chetsumon A, Umeda F, Maeda I, Yagi K, Mizoguchi T, Miura Y. Broad spectrum and mode of action of an antibiotic produced by Scytonema sp. TISTR 8208 in a seaweed-type bioreactor. Appl Biochem Biotechnol 1998;70(1):249–56.
CrossRef ADS Google scholar
[37]
Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 2011;102(8):4945–53.
CrossRef ADS Google scholar
[38]
Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA. Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 2011;108(9):2078–87.
CrossRef ADS Google scholar
[39]
Singh RN, Sharma S. Development of suitable photobioreactor for algae production—A review. Renew Sustain Energy Rev 2012;16(4):2347–53.
CrossRef ADS Google scholar
[40]
Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 2012;7(6):e38975.
CrossRef ADS Google scholar
[41]
Guo X, Yao L, Huang Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol 2015;190:189–95.
CrossRef ADS Google scholar
[42]
Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 2009;177(4):272–80.
CrossRef ADS Google scholar
[43]
Yang Q, Pehkonen SO, Ray MB. Evaluation of three different lamp emission models using novel application of potassium ferrioxalate actinometry. Ind Eng Chem Res 2004;43(4):948–55.
CrossRef ADS Google scholar
[44]
Merchuk JC, Wu X. Modeling of photobioreactors: Application to bubble column simulation. J Appl Phycol 2003;15(2):163–9.
CrossRef ADS Google scholar
[45]
Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, et al.Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Comput Electron Agric 2011;76(2):131–47.
CrossRef ADS Google scholar
[46]
Iluz D, Abu-Ghosh S. A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency. Energy Convers Manage 2016;126:767–73.
CrossRef ADS Google scholar
[47]
Zhang K, Kurano N, Miyachi S. Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: Effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature. Appl Microbiol Biotechnol 1999;52(6):781–6.
CrossRef ADS Google scholar
[48]
Zhang K, Miyachi S, Kurano N. Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 2001;23(1):21–6.
CrossRef ADS Google scholar
[49]
Zemke PE, Sommerfeld MR, Hu Q. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol 2013;97(12):5645–55.
CrossRef ADS Google scholar
[50]
Shang H, Scott JA, Shepherd SH, Ross GM. A dynamic thermal model for heating microalgae incubator ponds using off-gas. Chem Eng Sci 2010;65(16):4591–7.
CrossRef ADS Google scholar
[51]
Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G.Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 2013;139:149–54.
CrossRef ADS Google scholar
[52]
Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Prog 2006;22(6):1490–506.
CrossRef ADS Google scholar
[53]
Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 2013;12(2):131–51.
CrossRef ADS Google scholar
[54]
Huang Q, Zhang W, Zhang G. Airlift loop reactors. In: Yang C, Mao ZS. Numerical simulation of multiphase reactors with continuous liquid phase. London: Elsevier Academic Press; 2014. p. 153–230.
[55]
Xue S, Zhang Q, Wu X, Yan C, Cong W. A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour Technol 2013;138:141–7.
CrossRef ADS Google scholar
[56]
Grobbelaar JU. The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresour Technol 1991;38(2–3):189–94.
CrossRef ADS Google scholar
[57]
García-Camacho F, Sánchez-Mirón A, Molina-Grima E, Camacho-Rubio F, Merchuck JC. A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J Theor Biol 2012;304:1–15.
CrossRef ADS Google scholar
[58]
Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light. Biotechnol Bioeng 2011;108(12):2905–13.
CrossRef ADS Google scholar
[59]
Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Flashing light in microalgae biotechnology. Bioresour Technol 2016;203:357–63.
CrossRef ADS Google scholar
[60]
Vejrazka C, Streefland M, Wijffels RH, Janssen M. The role of an electron pool in algal photosynthesis during sub-second light-dark cycling. Algal Res 2015;12:43–51.
CrossRef ADS Google scholar
[61]
Vejrazka C, Janssen M, Streefland M, Wijffels RH. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng 2012;109(10):2567–74.
CrossRef ADS Google scholar
[62]
Kliphuis AMJ, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH. Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 2010;26(3):687–96.
CrossRef ADS Google scholar
[63]
Zijffers JWF, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH. Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol 2010;12(6):708–18.
CrossRef ADS Google scholar
[64]
Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, et al.Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresour Technol 2014;159:8–16.
CrossRef ADS Google scholar
[65]
Zhu J, Rong J, Zong B. Factors in mass cultivation of microalgae for biodiesel. Chin J Catal 2013;34(1):80–100.
CrossRef ADS Google scholar
[66]
Katsuda T, Shiraishi H, Ishizu N, Ranjbar R, Katoh S. Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 2008;105(3):216–20.
CrossRef ADS Google scholar
[67]
Wu X, Merchuk JC. A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem Eng Sci 2001;56(11):3527–38.
CrossRef ADS Google scholar
[68]
Grobbelaar JU. Factors governing algal growth in photobioreactors: The “open” versus “closed” debate. J Appl Phycol 2009;21(5):489–92.
CrossRef ADS Google scholar
[69]
Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25(3):294–306.
CrossRef ADS Google scholar
[70]
Ugwu CU, Aoyagi H, Uchiyama H. Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 2007;45(2):309–11.
CrossRef ADS Google scholar
[71]
Pegallapati AK, Nirmalakhandan N. Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renew Energy 2013;56:129–35.
CrossRef ADS Google scholar
[72]
Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 2008;99(9):3389–96.
CrossRef ADS Google scholar
[73]
Xing Z, Zong X, Pan J, Wang L. On the engineering part of solar hydrogen production from water splitting: Photoreactor design. Chem Eng Sci 2013;104:125–46.
CrossRef ADS Google scholar
[74]
Singh SP, Singh P. Effect of temperature and light on the growth of algae species: A review. Renew Sustain Energy Rev 2015;50:431–44.
CrossRef ADS Google scholar
[75]
Ugwu CU, Aoyagi H. Influence of shading inclined tubular photobioreactor surfaces on biomass productivity of C. sorokiniana.Photosynthetica 2008;46(2):283–5.
CrossRef ADS Google scholar
[76]
Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R. Microalgal biomass drying by a simple solar device. Int J Solar Energy 1997;18(4):303–11.
CrossRef ADS Google scholar
[77]
Carlozzi P, Pushparaj B, Degl’Innocenti A, Capperucci A. Growth characteristics of Rhodopseudomonas palustriscultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl Microbiol Biotechnol 2006;73(4):789–95.
CrossRef ADS Google scholar
[78]
Watanabe Y, de la Noüe J, Hall DO. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 2011;47(2):261–9.
CrossRef ADS Google scholar
[79]
Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 2012;488(7411):329–35.
CrossRef ADS Google scholar
[80]
Acién Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 1998;58(6):605–16.
CrossRef ADS Google scholar
[81]
Berberoglu H, Pilon L, Melis A. Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+. Int J Hydrogen Energy 2008;33(22):6467–83.
CrossRef ADS Google scholar
[82]
Vasumathi KK, Premalatha M, Subramanian P. Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sustain Energy Rev 2012;16(7):5443–50.
CrossRef ADS Google scholar
[83]
Fan LH, Zhang YT, Zhang L, Chen HL. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 2008;325(1):336–45.
CrossRef ADS Google scholar
[84]
Li S. The dynamics of CO2 fixation by microalgae [dissertation]. Qingdao: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; 2013.
[85]
Iglesias-RodrÍGuez MD, Nimer NA, Merrett MJ. Carbon dioxide-concentrating mechanism and the development of extracellular carbonic anhydrase in the marine picoeukaryote Micromonas pusilla. New Phytol 1998;140(4):685–90.
CrossRef ADS Google scholar
[86]
Moheimani NR, Borowitzka MA. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 2011;90(4):1399–407.
CrossRef ADS Google scholar
[87]
Luo HP, Kemoun A, Al-Dahhan MH, Sevilla JMF, Sánchez JLG, Camacho FG, et al.Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT. Chem Eng Sci 2003;58(12):2519–27.
CrossRef ADS Google scholar
[88]
Perner-Nochta I, Posten C. Simulations of light intensity variation in photobioreactors. J Biotechnol 2007;131(3):276–85.
CrossRef ADS Google scholar
[89]
Berenguel M, Rodrı́guez F, Acién FG, Garcı́a JL. Model predictive control of pH in tubular photobioreactors. J Process Contr 2004;14(4):377–87.
CrossRef ADS Google scholar
[90]
Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 2008;138(1–3):136–47.
CrossRef ADS Google scholar
[91]
Ugwu C, Ogbonna J, Tanaka H. Design of static mixers for inclined tubular photobioreactors. J Appl Phycol 2003;15(2):217–23.
CrossRef ADS Google scholar
[92]
Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH. Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 2015;8(1):215.
CrossRef ADS Google scholar
[93]
Chen CY, Chang JS, Chang HY, Chen TY, Wu JH, Lee WL. Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochem Eng J 2013;77:74–81.
CrossRef ADS Google scholar
[94]
Abomohra AEF, El-Sheekh M, Hanelt D. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 2014;64:237–44.
CrossRef ADS Google scholar
[95]
Kim ZH, Park H, Hong SJ, Lim SM, Lee CG. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst Eng 2016;39(5):713–23.
CrossRef ADS Google scholar
[96]
Huang J, Ying J, Fan F, Yang Q, Wang J, Li Y. Development of a novel multi-column airlift photobioreactor with easy scalability by means of computational fluid dynamics simulations and experiments. Bioresour Technol 2016;222:399–407.
CrossRef ADS Google scholar
[97]
Soman A, Shastri Y. Optimization of novel photobioreactor design using computational fluid dynamics. Appl Energy 2015;140:246–55.
CrossRef ADS Google scholar
[98]
Huang Q, Yao L, Guo X. A device consisted of airlift flat-panel photobioreactors for the cultivation of photosynthetic microorganism. China patent, Appl Num: 201510478717.1. 2015.
[99]
Dasgupta CN, Jose Gilbert J, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, et al.Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy 2010;35(19):10218–38.
CrossRef ADS Google scholar
[100]
Meiser A, Schmid-Staiger U, Trösch W. Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutumin the flat panel airlift (FPA) reactor. J Appl Phycol 2004;16(3):215–25.
CrossRef ADS Google scholar
[101]
Huang J, Feng F, Wan M, Ying J, Li Y, Qu X, et al.Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics. Bioresour Technol 2015;182:151–9.
CrossRef ADS Google scholar
[102]
Wheaton ZC, Krishnamoorthy G. Modeling radiative transfer in photobioreactors for algal growth. Comput Electron Agric 2012;87:64–73.
CrossRef ADS Google scholar
[103]
Pareek VK, Cox SJ, Brungs MP, Young B, Adesina AA. Computational fluid dynamic (CFD) simulation of a pilot-scale annular bubble column photocatalytic reactor. Chem Eng Sci 2003;58(3–6):859–65.
CrossRef ADS Google scholar
[104]
Denny F, Scott J, Pareek V, Ding Peng G, Amal R. CFD modelling for a TiO2-coated glass-bead photoreactor irradiated by optical fibres: Photocatalytic degradation of oxalic acid. Chem Eng Sci 2009;64(8):1695–706.
CrossRef ADS Google scholar
[105]
Wu X, Merchuk JC. Simulation of algae growth in a bench-scale bubble column reactor. Biotechnol Bioeng 2002;80(2):156–68.
CrossRef ADS Google scholar
[106]
Wu X, Merchuk JC. Simulation of algae growth in a bench scale internal loop airlift reactor. Chem Eng Sci 2004;59(14):2899–912.
CrossRef ADS Google scholar
[107]
Janssen M, Janssen M, de Winter M, Tramper J, Mur LR, Snel J, et al.Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 2000;78(2):123–37.
CrossRef ADS Google scholar
[108]
Suh IS, Lee SB. A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng 2003;82(2):180–9.
CrossRef ADS Google scholar
[109]
Benson BC, Gutierrez-Wing MT, Rusch KA. The development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquacult Eng 2007;36(2):198–211.
CrossRef ADS Google scholar
[110]
Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH. Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng 2007;97(5):1108–20.
CrossRef ADS Google scholar
[111]
Elyasi S, Taghipour F. Simulation of UV photoreactor for degradation of chemical contaminants: Model development and evaluation. Environ Sci Technol 2010;44(6):2056–63.
CrossRef ADS Google scholar
[112]
Li D, Xiong K, Li W, Yang Z, Liu C, Feng X, et al.Comparative study in liquid-phase heterogeneous photocatalysis: Model for photoreactor scale-up. Ind Eng Chem Res 2010;49(18):8397–405.
CrossRef ADS Google scholar
[113]
Pottier L, Pruvost J, Deremetz J, Cornet JF, Legrand J, Dussap CG. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng 2005;91(5):569–82.
CrossRef ADS Google scholar
[114]
Santos PD, Lani A. An object-oriented implementation of a parallel Monte Carlo code for radiation transport. Comput Phys Commun 2016;202:233–61.
CrossRef ADS Google scholar
[115]
Rochatte V, Dahi G, Eskandari A, Dauchet J, Gros F, Roudet M, et al.Radiative transfer approach using Monte Carlo method for actinometry in complex geometry and its application to Reinecke salt photodissociation within innovative pilot-scale photo(bio)reactors. Chem Eng J 2017;308:940–53.
CrossRef ADS Google scholar
[116]
Trujillo Francisco J, Lee Ivy AL, Hsu CH, Safinski T, Adesina Adesoji A. Hydrodynamically-enhanced light intensity distribution in an externally-irradiated novel aerated photoreactor: CFD simulation and experimental studies. Int J Chem React Eng 2008;6(1):A58.
[117]
Ben Salah M, Askri F, Slimi K, Ben Nasrallah S. Numerical resolution of the radiative transfer equation in a cylindrical enclosure with the finite-volume method. Int J Heat Mass Transfer 2004;47(10–11):2501–9.
CrossRef ADS Google scholar
[118]
Pareek V, Chong S, Tadé M, Adesina AA. Light intensity distribution in heterogenous photocatalytic reactors. Asia-Pac J Chem Eng 2008;3(2):171–201.
CrossRef ADS Google scholar
[119]
Chai JC, Lee HS, Patankar SV. Finite volume method for radiation heat transfer. J Thermophys Heat Transfer 1994;8(3):419–25.
CrossRef ADS Google scholar
[120]
van de Hulst HC. Light scattering by small particles. 2nd ed. New York: Dover Publications; 1981.
[121]
Huang Q, Yao L, Liu T, Yang J. Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 2012;84:718–26.
CrossRef ADS Google scholar
[122]
Berberoglu H, Yin J, Pilon L. Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrogen Energy 2007;32(13):2273–85.
CrossRef ADS Google scholar
[123]
Modest MF. Radiative heat transfer. 2nd edition. New York: Academic Press; 2003.
[124]
Pruvost J, Cornet JF, Legrand J. Hydrodynamics influence on light conversion in photobioreactors: An energetically consistent analysis. Chem Eng Sci 2008;63(14):3679–94.
CrossRef ADS Google scholar
[125]
Huang Q, Yang C, Yu G, Mao ZS. 3-D simulations of an internal airlift loop reactor using a steady two-fluid model. Chem Eng Technol 2007;30(7):870–9.
CrossRef ADS Google scholar
[126]
Huang Q, Yang C, Yu G, Mao ZS. CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem Eng Sci 2010;65(20):5527–36.
CrossRef ADS Google scholar
[127]
Huang Q, Zhang W, Yang C. Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction. Chem Eng Sci 2015;135:441–51.
CrossRef ADS Google scholar
[128]
Lee E, Jalalizadeh M, Zhang Q. Growth kinetic models for microalgae cultivation: A review. Algal Res 2015;12:497–512.
CrossRef ADS Google scholar
[129]
Pruvost J, Legrand J, Legentilhomme P, Muller-Feuga A. Simulation of microalgae growth in limiting light conditions: Flow effect. AIChE J 2002;48(5):1109–20.
CrossRef ADS Google scholar
[130]
Pruvost J, Legrand J, Legentilhomme P, Muller-Feuga A. Lagrangian trajectory model for turbulent swirling flow in an annular cell: Comparison with residence time distribution measurements. Chem Eng Sci 2002;57(7):1205–15.
CrossRef ADS Google scholar
[131]
Rosello Sastre R, Csögör Z, Perner-Nochta I, Fleck-Schneider P, Posten C. Scale-down of microalgae cultivations in tubular photo-bioreactors—A conceptual approach. J Biotechnol 2007;132(2):127–33.
CrossRef ADS Google scholar
[132]
Muller-Feuga A, Le Guédes R, Pruvost J. Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. J Biotechnol 2003;103(2):153–63.
CrossRef ADS Google scholar
[133]
Eilers PHC, Peeters JCH. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modell 1988;42(3–4):199–215.
CrossRef ADS Google scholar
[134]
Podola B, Li T, Melkonian M. Porous substrate bioreactors: A paradigm shift in microalgal biotechnology? Trends Biotechnol 2017;35(2):121–32.
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0301701); the National Natural Science Foundation of China (91434114, 21376254); the Major National Scientific Instrument Development Project (21427814); the Instrument Developing Project of the Chinese Academy of Sciences (YZ201641); the International Partnership Program for Creative Research Teams, Chinese Academy of Sciences, and the Supercomputing Center of USTC (University of Science and Technology of China).

Compliance with ethics guidelines

Qingshan Huang, Fuhua Jiang, Lianzhou Wang, and Chao Yang declare that they have no conflict of interest or financial conflicts to disclose.

版权

2017 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(1481 KB)

Accesses

Citation

Detail

段落导航
相关文章

/