
制药工业中结晶过程的最新进展
Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry
Crystallization is one of the oldest separation and purification unit operations, and has recently contributed to significant improvements in producing higher-value products with specific properties and in building efficient manufacturing processes. In this paper, we review recent developments in crystal engineering and crystallization process design and control in the pharmaceutical industry. We systematically summarize recent methods for understanding and developing new types of crystals such as co-crystals, polymorphs, and solvates, and include several milestones such as the launch of the first co-crystal drug, Entresto (Novartis), and the continuous manufacture of Orkambi (Vertex). Conventional batch and continuous processes, which are becoming increasingly mature, are being coupled with various control strategies and the recently developed crystallizers are thus adapting to the needs of the pharmaceutical industry. The development of crystallization process design and control has led to the appearance of several new and innovative crystallizer geometries for continuous operation and improved performance. This paper also reviews major recent progress in the area of process analytical technology.
Crystallization / Crystal engineering / Polymorphism / Crystallization process design and control / Crystal size distribution
[1] |
D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91(9):4082–5.
CrossRef
ADS
Google scholar
|
[2] |
Wnendt S, Finkam M, Winter W, Ossig J, Raabe G, Zwingenberger K. Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogues. Chirality 1996;8(5):390–6.
CrossRef
ADS
Google scholar
|
[3] |
Bauer JF, Saleki-Gerhardt A, Narayanan BA, Chemburkar SR, Patel KM, Spiwek HO, et al., inventors; Abbott Laboratories, assignee. Polymorph of a pharmaceutical. United States patent US 8193367 B2. 2012 Jun 5.
|
[4] |
Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, et al.Ritonavir: An extraordinary example of conformational polymorphism. Pharm Res 2001;18(6):859–66.
CrossRef
ADS
Google scholar
|
[5] |
Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev 2004;56(3):321–34.
CrossRef
ADS
Google scholar
|
[6] |
Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng 2011;2:259–80.
CrossRef
ADS
Google scholar
|
[7] |
Sood J, Sapra B, Bhandari S, Jindal M, Tiwary AK. Understanding pharmaceutical polymorphic transformations I: Influence of process variables and storage conditions. Ther Deliv 2014;5(10):1123–42.
CrossRef
ADS
Google scholar
|
[8] |
Wu JX, Xia D, van den Berg F, Amigo JM, Rades T, Yang M, et al.A novel image analysis methodology for online monitoring of nucleation and crystal growth during solid state phase transformations. Int J Pharm 2012;433(1–2):60–70.
CrossRef
ADS
Google scholar
|
[9] |
Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, et al.Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 2013;341(6148):885–9.
CrossRef
ADS
Google scholar
|
[10] |
Kuhs M, Zeglinski J, Rasmuson ÅC. Influence of history of solution in crystal nucleation of fenoxycarb: Kinetics and mechanisms. Cryst Growth Des 2014;14(3):905–15.
CrossRef
ADS
Google scholar
|
[11] |
Ito F, Suzuki Y, Fujimori J, Sagawa T, Hara M, Seki T, et al.Direct visualization of the two-step nucleation model by fluorescence color changes during evaporative crystallization from solution. Sci Rep 2016;6:22918.
CrossRef
ADS
Google scholar
|
[12] |
Srisanga S, Flood AE, Galbraith SC, Rugmai S, Soontaranon S, Ulrich J. Crystal growth rate dispersion versus size-dependent crystal growth: Appropriate modeling for crystallization processes. Cryst Growth Des 2015;15(5):2330–6.
CrossRef
ADS
Google scholar
|
[13] |
Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, et al.End-to-end continuous manufacturing of pharmaceuticals: Integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 2013;52(47):12359–63.
CrossRef
ADS
Google scholar
|
[14] |
Myerson AS, Krumme M, Nasr M, Thomas H, Braatz RD. Control systems engineering in continuous pharmaceutical manufacturing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 2015;104(3):832–9.
CrossRef
ADS
Google scholar
|
[15] |
Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al.On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016;352(6281):61–7.
CrossRef
ADS
Google scholar
|
[16] |
Woo XY, Tan RB, Braatz RD. Precise tailoring of the crystal size distribution by controlled growth and continuous seeding from impinging jet crystallizers. CrystEngComm 2011;13(6):2006–14.
CrossRef
ADS
Google scholar
|
[17] |
Kee NC, Tan RB, Braatz RD. Selective crystallization of the metastable α-form of L-glutamic acid using concentration feedback control. Cryst Growth Des 2009;9(7):3044–51.
CrossRef
ADS
Google scholar
|
[18] |
Singh MR. Towards the control of crystal shape and morphology distributions in crystallizers [dissertation]. West Lafayette: Purde University; 2013.
|
[19] |
Wang Y, Chen A. Crystallization-based separation of enantiomers. In: Andrushko V, Andrushko N, editors Stereoselective synthesis of drugs and natural products, two volume set. 1st ed. Hoboken: John Wiley & Sons, Inc.; 2013. p. 1663–82.
CrossRef
ADS
Google scholar
|
[20] |
Nagy ZK, Fevotte G, Kramer H, Simon LL. Recent advances in the monitoring, modelling and control of crystallization systems. Chem Eng Res Des 2013;91(10):1903–22.
CrossRef
ADS
Google scholar
|
[21] |
US Food and Drug Administration. Pharmaceutical cGMPs for the 21st century—A risk based approach. Final report. US Food and Drug Administration; 2004 Sep.
|
[22] |
Chew W, Sharratt P. Trends in process analytical technology. Anal Methods 2010;2(10):1412–38.
CrossRef
ADS
Google scholar
|
[23] |
Nagy ZK, Braatz RD. Advances and new directions in crystallization control. Annu Rev Chem Biomol Eng 2012;3:55–75.
CrossRef
ADS
Google scholar
|
[24] |
Yang Y, Nagy ZK. Advanced control approaches for combined cooling/antisolvent crystallization in continuous mixed suspension mixed product removal cascade crystallizers. Chem Eng Sci 2015;127:362–73.
CrossRef
ADS
Google scholar
|
[25] |
Yang Y, Song L, Nagy ZK. Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization. Cryst Growth Des 2015;15(12):5839–48.
CrossRef
ADS
Google scholar
|
[26] |
Raphael M, Rohani S. Sunflower protein precipitation in a tubular precipitator. Can J Chem Eng 1999;77(3):540–54.
CrossRef
ADS
Google scholar
|
[27] |
Alvarez AJ, Myerson AS. Continuous plug flow crystallization of pharmaceutical compounds. Cryst Growth Des 2010;10(5):2219–28.
CrossRef
ADS
Google scholar
|
[28] |
Brown CJ, Ni XW. Evaluation of growth kinetics of antisolvent crystallization of paracetamol in an oscillatory baffled crystallizer utilizing video imaging. Cryst Growth Des 2011;11(9):3994–4000.
CrossRef
ADS
Google scholar
|
[29] |
McGlone T, Briggs NE, Clark CA, Brown CJ, Sefcik J, Florence AJ. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization. Org Process Res Dev 2015;19(9):1186–202.
CrossRef
ADS
Google scholar
|
[30] |
Jiang X, Lu D, Wu X, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution. AIChE J 2016;62(3):829–41.
CrossRef
ADS
Google scholar
|
[31] |
Lakerveld R, van Krochten JJ, Kramer HJ. An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer. Cryst Growth Des 2014;14(7):3264–75.
CrossRef
ADS
Google scholar
|
[32] |
Liu WJ, Ma CY, Wang XZ. Novel impinging jet and continuous crystallizer design for rapid reactive crystallization of pharmaceuticals. Procedia Eng 2015;102:499–507.
CrossRef
ADS
Google scholar
|
[33] |
Yazdanpanah N, Ferguson ST, Myerson AS, Trout BL. Novel technique for filtration avoidance in continuous crystallization. Cryst Growth Des 2016;16(1):285–96.
CrossRef
ADS
Google scholar
|
[34] |
Schmidt GM. Photodimerization in the solid state. Pure Appl Chem 1971;27(4):647–78.
CrossRef
ADS
Google scholar
|
[35] |
Mahata G, Dey S, Chanda J. Crystal engineering: A powerful tool towards designing pharmaceutical solids with desirable physicochemical properties. Am J Drug Dis 2014;1(1):1–9.
|
[36] |
Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chem Commun 2014;50(8):906–23.
CrossRef
ADS
Google scholar
|
[37] |
Desiraju GR. Crystal engineering: A holistic view. Angew Chem Int Ed 2007;46(44):8342–56.
CrossRef
ADS
Google scholar
|
[38] |
LlinàsA, Goodman JM. Polymorph control: Past, present and future. Drug Discov Today 2008;13(5–6):198–210.
CrossRef
ADS
Google scholar
|
[39] |
Mirmehrabi M, Rohani S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J Pharm Sci 2005;94(7):1560–76.
CrossRef
ADS
Google scholar
|
[40] |
Allesø M, van den Berg F, Cornett C, Jørgensen FS, Halling-Sørensen B, de Diego HL, et al.Solvent diversity in polymorph screening. J Pharm Sci 2008;97(6):2145–59.
CrossRef
ADS
Google scholar
|
[41] |
Pfund LY, Matzger AJ. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb Sci 2014;16(7):309–13.
CrossRef
ADS
Google scholar
|
[42] |
Storey R, Docherty R, Higginson P, Dallman C, Gilmore C, Barr G, et al.Automation of solid form screening procedures in the pharmaceutical industry—How to avoid the bottlenecks. Crystallogr Rev 2004;10(1):45–56.
CrossRef
ADS
Google scholar
|
[43] |
Kralj D, Brečević L, Kontrec J. Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth 1997;177(3–4):248–57.
CrossRef
ADS
Google scholar
|
[44] |
Sheikholeslamzadeh E, Rohani S. Modeling and optimal control of solution mediated polymorphic transformation of L-glutamic acid. Ind Eng Chem Res 2013;52(7):2633–41.
CrossRef
ADS
Google scholar
|
[45] |
Trifkovic M, Rohani S, Sheikhzadeh M. Kinetics estimation and polymorphic transformation modeling of buspirone hydrochloride. J Cryst Process Technol 2012;2(2):31–43.
CrossRef
ADS
Google scholar
|
[46] |
Simone E, Saleemi AN, Nagy ZK. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system. Org Process Res Dev 2015;19(1):167–77.
CrossRef
ADS
Google scholar
|
[47] |
Takeguchi K, Obitsu K, Hirasawa S, Orii R, Ieda S, Okada M, et al.Effect of temperature and solvent of solvent-mediated polymorph transformation on ASP3026 polymorphs and scale-up. Org Process Res Dev 2016;20(5):970–6.
CrossRef
ADS
Google scholar
|
[48] |
US Food and Drug Administration. Guidance for industry: ANDAs: Pharmaceutical solid polymorphism: Chemistry, manufacturing, and controls information. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2007 Jul.
|
[49] |
Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 2011;420(1):1–10.
CrossRef
ADS
Google scholar
|
[50] |
Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 2004;58(2):265–78.
CrossRef
ADS
Google scholar
|
[51] |
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12(3):413–20.
CrossRef
ADS
Google scholar
|
[52] |
Lin SY. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs: Metoclopramide as an example. Drug Discov Today 2015;20(2):209–22.
CrossRef
ADS
Google scholar
|
[53] |
Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS. Assessment of the amorphous “solubility” of a group of diverse drugs using new experimental and theoretical approaches. Mol Pharm 2015;12(2):484–95.
CrossRef
ADS
Google scholar
|
[54] |
Skrdla PJ, Floyd PD, Dell’orco PC. Practical estimation of amorphous solubility enhancement using thermoanalytical data: Determination of the amorphous/crystalline solubility ratio for pure indomethacin and felodipine. J Pharm Sci 2016;105(9):2625–30.
CrossRef
ADS
Google scholar
|
[55] |
Yu L. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 2001;48(1):27–42.
CrossRef
ADS
Google scholar
|
[56] |
Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev 2016;100:116–25.
CrossRef
ADS
Google scholar
|
[57] |
Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs—Part 1: Preparation, stability and dissolution enhancement. Eur J Pharm Biopharm 2013;85(3 Pt B):873–81.
CrossRef
ADS
Google scholar
|
[58] |
US Food and Drug Administration. Naming of drug products containing salt drug substances; guidance for industry; availability. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2015 Jun.
|
[59] |
Fernández Casares A, Nap WM, Ten Figás G, Huizenga P, Groot R, Hoffmann M. An evaluation of salt screening methodologies. J Pharm Pharmacol 2015;67(6):812–22.
CrossRef
ADS
Google scholar
|
[60] |
Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59(7):603–16.
CrossRef
ADS
Google scholar
|
[61] |
Saal C, Becker A. Pharmaceutical salts: A summary on doses of salt formers from the Orange Book. Eur J Pharm Sci 2013;49(4):614–23.
CrossRef
ADS
Google scholar
|
[62] |
Prohotsky DL, Zhao F. A survey of top 200 drugs—Inconsistent practice of drug strength expression for drugs containing salt forms. J Pharm Sci 2012;101(1):1–6.
CrossRef
ADS
Google scholar
|
[63] |
Thackaberry EA. Non-clinical toxicological considerations for pharmaceutical salt selection. Expert Opin Drug Metab Toxicol 2012;8(11):1419–33.
CrossRef
ADS
Google scholar
|
[64] |
Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Commun 2016;52(54):8342–60.
CrossRef
ADS
Google scholar
|
[65] |
Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzmán HR, et al.Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc 2003;125(28):8456–7.
CrossRef
ADS
Google scholar
|
[66] |
Wang JR, Yu Q, Dai W, Mei X. Drug-drug co-crystallization presents a new opportunity for the development of stable vitamins. Chem Commun 2016;52(17):3572–5.
CrossRef
ADS
Google scholar
|
[67] |
Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al.Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des 2012;12(5):2147–52.
CrossRef
ADS
Google scholar
|
[68] |
US Food and Drug Administration. Guidance for industry: Regulatory classification of pharmaceutical co-crystals. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2013 Apr.
|
[69] |
Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal. Cryst Growth Des 2016;16(5):2923–30.
CrossRef
ADS
Google scholar
|
[70] |
Chattoraj S, Shi L, Chen M, Alhalaweh A, Velaga S, Sun CC. Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin. Cryst Growth Des 2014;14(8):3864–74.
CrossRef
ADS
Google scholar
|
[71] |
Weyna DR, Cheney ML, Shan N, Hanna M, Zaworotko MJ, Sava V, et al.Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm 2012;9(7):2094–102.
CrossRef
ADS
Google scholar
|
[72] |
Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 2009;131(47):17048–9.
CrossRef
ADS
Google scholar
|
[73] |
Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci 2013;34(3):185–93.
CrossRef
ADS
Google scholar
|
[74] |
Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: Along the path to improved medicines. Chem Commun 2016;52(4):640–55.
CrossRef
ADS
Google scholar
|
[75] |
Wu TK, Lin SY, Lin HL, Huang YT. Simultaneous DSC-FTIR microspectroscopy used to screen and detect the co-crystal formation in real time. Bioorg Med Chem Lett 2011;21(10):3148–51.
CrossRef
ADS
Google scholar
|
[76] |
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: Towards the development of effective therapeutic hybrids. Drug Discov Today 2016;21(3):481–90.
CrossRef
ADS
Google scholar
|
[77] |
Fábián L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst Growth Des 2009;9(3):1436–43.
CrossRef
ADS
Google scholar
|
[78] |
Hilfiker R, editor. Polymorphism: In the pharmaceutical industry. Hoboken: John Wiley & Sons, Inc.; 2006.
|
[79] |
Berziņš A, Skarbulis E, Rekis T, Actiņš A. On the formation of droperidol solvates: Characterization of structure and properties. Cryst Growth Des 2014;14(5):2654–64.
CrossRef
ADS
Google scholar
|
[80] |
Ulrich J, Frohberg P. Problems, potentials and future of industrial crystallization. Front Chem Sci Eng 2013;7(1):1–8.
CrossRef
ADS
Google scholar
|
[81] |
Ismail SZ, Anderton CL, Copley RC, Price LS, Price SL. Evaluating a crystal energy landscape in the context of industrial polymorph screening. Cryst Growth Des 2013;13(6):2396–406.
CrossRef
ADS
Google scholar
|
[82] |
Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, et al.Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016;72(Pt 4 ):439–59.
CrossRef
ADS
Google scholar
|
[83] |
Price SL, Braun DE, Reutzel-Edens SM. Can computed crystal energy landscapes help understand pharmaceutical solids? Chem Commun 2016;52(44):7065–77.
CrossRef
ADS
Google scholar
|
[84] |
Myerson AS, Trout BL. Chemistry. Nucleation from solution. Science 2013;341(6148):855–6.
CrossRef
ADS
Google scholar
|
[85] |
Dandekar P, Kuvadia ZB, Doherty MF. Engineering crystal morphology. Annu Rev Mater Res 2013;43:359–86.
CrossRef
ADS
Google scholar
|
[86] |
Shtukenberg AG, Lee SS, Kahr B, Ward MD. Manipulating crystallization with molecular additives. Annu Rev Chem Biomol Eng 2014;5:77–96.
CrossRef
ADS
Google scholar
|
[87] |
Diao Y, Harada T, Myerson AS, Hatton TA, Trout BL. The role of nanopore shape in surface-induced crystallization. Nat Mater 2011;10(11):867–71.
CrossRef
ADS
Google scholar
|
[88] |
Diao Y, Myerson AS, Hatton TA, Trout BL. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 2011;27(9):5324–34.
CrossRef
ADS
Google scholar
|
[89] |
Diao Y, Whaley KE, Helgeson ME, Woldeyes MA, Doyle PS, Myerson AS, et al.Gel-induced selective crystallization of polymorphs. J Am Chem Soc 2012;134(1):673–84.
CrossRef
ADS
Google scholar
|
[90] |
Kacker R, Salvador PM, Sturm GS, Stefanidis GD, Lakerveld R, Nagy ZK, et al.Microwave assisted direct nucleation control for batch crystallization: Crystal size control with reduced batch time. Cryst Growth Des 2016;16(1):440–6.
CrossRef
ADS
Google scholar
|
[91] |
Ouyang JB, Wang JK, Huang X, Gao Y, Bao Y, Wang YL, et al.Gel formation and phase transformation during the crystallization of valnemulin hydrogen tartrate. Ind Eng Chem Res 2014;53(43):16859–63.
CrossRef
ADS
Google scholar
|
[92] |
Gao ZG, Li L, Bao Y, Wang Z, Hao HX, Yin QX, et al.From jellylike phase to crystal: Effects of solvent on self-assembly of cefotaxime sodium. Ind Eng Chem Res 2016;55(11):3075–83.
CrossRef
ADS
Google scholar
|
[93] |
Zhou G, Moment A, Cuff J, Schafer W, Orella C, Sirota E, et al.Process development and control with recent new FBRM, PVM, and IR. Org Process Res Dev 2015;19(1):227–35.
CrossRef
ADS
Google scholar
|
[94] |
Simone E, Saleemi AN, Nagy ZK. Raman, UV, NIR, and Mid-IR spectroscopy with focused beam reflectance measurement in monitoring polymorphic transformations. Chem Eng Technol 2014;37(8):1305–13.
CrossRef
ADS
Google scholar
|
[95] |
Simon LL, Pataki H, Marosi G, Meemken F, Hungerbühler K, Baiker A, et al.Assessment of recent process analytical technology (PAT) trends: A multiauthor review. Org Process Res Dev 2015;19(1):3–62.
CrossRef
ADS
Google scholar
|
[96] |
Simon LL, Merz T, Dubuis S, Lieb A, Hungerbuhler K. In-situ monitoring of pharmaceutical and specialty chemicals crystallization processes using endoscopy—Stroboscopy and multivariate image analysis. Chem Eng Res Des 2012;90(11):1847–55.
CrossRef
ADS
Google scholar
|
[97] |
El Arnaout T, Cullen PJ, Sullivan C. A novel backlight fiber optical probe and image algorithms for real time size-shape analysis during crystallization. Chem Eng Sci 2016;149:42–50.
CrossRef
ADS
Google scholar
|
[98] |
Pertig D, Buchfink R, Petersen S, Stelzer T, Ulrich J. Inline analyzing of industrial crystallization processes by an innovative ultrasonic probe technique. Chem Eng Technol 2011;34(4):639–46.
CrossRef
ADS
Google scholar
|
[99] |
Gherras N, Serris E, Févotte G. Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media. Int J Pharm 2012;439(1–2):109–19.
CrossRef
ADS
Google scholar
|
[100] |
Nagy ZK, Chew JW, Fujiwara M, Braatz RD. Comparative performance of concentration and temperature controlled batch crystallizations. J Process Contr 2008;18(3–4):399–407.
CrossRef
ADS
Google scholar
|
[101] |
Duffy D, Barrett M, Glennon B. Novel, calibration-free strategies for supersaturation control in antisolvent crystallization processes. Cryst Growth Des 2013;13(8):3321–32.
CrossRef
ADS
Google scholar
|
[102] |
Abu Bakar MR, Nagy ZK, Saleemi AN, Rielly CD. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Cryst Growth Des 2009;9(3):1378–84.
CrossRef
ADS
Google scholar
|
[103] |
Nagy ZK, Fujiwara M, Braatz RD. Modelling and control of combined cooling and antisolvent crystallization processes. J Process Contr 2008;18(9):856–64.
CrossRef
ADS
Google scholar
|
[104] |
Mesbah A, Landlust J, Huesman AE, Kramer HJ, Jansens PJ, Van den Hof PM. A model-based control framework for industrial batch crystallization processes. Chem Eng Res Des 2010;88(9):1223–33.
CrossRef
ADS
Google scholar
|
[105] |
Aamir E, Rielly CD, Nagy ZK. Experimental evaluation of the targeted direct design of temperature trajectories for growth-dominated crystallization processes using an analytical crystal size distribution estimator. Ind Eng Chem Res 2012;51(51):16677–87.
CrossRef
ADS
Google scholar
|
[106] |
Nagy ZK. Model based robust control approach for batch crystallization product design. Comput Chem Eng 2009;33(10):1685–91.
CrossRef
ADS
Google scholar
|
[107] |
Trifkovic M, Sheikhzadeh M, Rohani S. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer. Ind Eng Chem Res 2008;47(5):1586–95.
CrossRef
ADS
Google scholar
|
[108] |
Sheikhzadeh M, Trifkovic M, Rohani S. Real-time optimal control of an anti-solvent isothermal semi-batch crystallization process. Chem Eng Sci 2008;63(3):829–39.
CrossRef
ADS
Google scholar
|
[109] |
Moldoványi N, Lakatos BG, Szeifert F. Model predictive control of MSMPR crystallizers. J Cryst Growth 2005;275(1–2):e1349–54.
CrossRef
ADS
Google scholar
|
[110] |
Chianese A, Kramer HJ, editors. Industrial crystallization process monitoring and control. Hoboken: John Wiley & Sons, Inc.; 2012
|
[111] |
Lu J, Li YP, Wang J, Ren GB, Rohani S, Ching CB. Crystallization of an active pharmaceutical ingredient that oils out. Separ Purif Tech 2012;96:1–6.
CrossRef
ADS
Google scholar
|
[112] |
De Albuquerque I, Mazzotti M. Crystallization process design using thermodynamics to avoid oiling out in a mixture of vanillin and water. Cryst Growth Des 2014;14(11):5617–25.
CrossRef
ADS
Google scholar
|
[113] |
Takasuga M, Ooshima H. Control of crystal aspect ratio and size by changing solvent composition in oiling out crystallization of an active pharmaceutical ingredient. Cryst Growth Des 2015;15(12):5834–8.
CrossRef
ADS
Google scholar
|
[114] |
Yin YH, Gao ZG, Bao Y, Hou BH, Hao HX, Liu D, et al.Gelation phenomenon during antisolvent crystallization of cefotaxime sodium. Ind Eng Chem Res 2013;53(3):1286–92.
CrossRef
ADS
Google scholar
|
[115] |
Yang JX, Wang YL, Hao HX, Xie C, Bao Y, Yin QX, et al.Spherulitic crystallization of L-tryptophan: Characterization, growth kinetics, and mechanism. Cryst Growth Des 2015;15(10):5124–32.
CrossRef
ADS
Google scholar
|
[116] |
Paroli F. Industrial crystallizers design and control. In: Chianese A, Kramer HJ, editors Industrial crystallization process monitoring and control. Weinheim: Wiley-VCH; 2012. p. 203–24.
CrossRef
ADS
Google scholar
|
[117] |
Sultana M, Jensen KF, inventors; Massachusetts Institute of Technology, assignee. Systems and methods for microfluidic crystallization. United States patent US 20100298602 A1. 2010 Nov 25.
|
[118] |
Teychené S, Biscans B. Crystal nucleation in a droplet based microfluidic crystallizer. Chem Eng Sci 2012;77:242–8.
CrossRef
ADS
Google scholar
|
[119] |
Ildefonso M, Candoni N, Veesler S. A cheap, easy microfluidic crystallization device ensuring universal solvent compatibility. Org Process Res Dev 2012;16(4):556–60.
CrossRef
ADS
Google scholar
|
[120] |
Ildefonso M, Revalor E, Punniam P, Salmon JB, Candoni N, Veesler S. Nucleation and polymorphism explored via an easy-to-use microfluidic tool. J Cryst Growth 2012;342(1):9–12.
CrossRef
ADS
Google scholar
|
[121] |
Liu WJ, Ma CY, Liu JJ, Zhang Y, Wang XZ. Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process. AIChE J 2015;61(2):503–17.
CrossRef
ADS
Google scholar
|
[122] |
Woo XY, Tan RB, Braatz RD. Modeling and computational fluid dynamics–population balance equation–micromixing simulation of impinging jet crystallizers. Cryst Growth Des 2009;9(1):156–64.
CrossRef
ADS
Google scholar
|
[123] |
Liu WJ, Ma CY, Liu JJ, Zhang Y, Wang XZ. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers. AIChE J 2017;63(3):967−74.
CrossRef
ADS
Google scholar
|
[124] |
Kaur Bhangu S, Ashokkumar M, Lee J. Ultrasound assisted crystallization of paracetamol: Crystal size distribution and polymorph control. Cryst Growth Des 2016;16(4):1934–41.
CrossRef
ADS
Google scholar
|
[125] |
Soare A, Lakerveld R, van Royen J, Zocchi G, Stankiewicz AI, Kramer HJ. Minimization of attrition and breakage in an airlift crystallizer. Ind Eng Chem Res 2012;51(33):10895–909.
CrossRef
ADS
Google scholar
|
[126] |
Leonelli C, Mason TJ. Microwave and ultrasonic processing: Now a realistic option for industry. Chem Eng Process: Process Intensification. 2010;49(9):885–900.
CrossRef
ADS
Google scholar
|
[127] |
Soare A, Lakerveld R, van Royen J, Zocchi G, Stankiewicz AI, Kramer HJ. Minimization of attrition and breakage in an airlift crystallizer. Ind Eng Chem Res 2012;51(33):10895–909.
CrossRef
ADS
Google scholar
|
[128] |
Eder RJ, Radl S, Schmitt E, Innerhofer S, Maier M, Gruber-Woelfler H, et al.Continuously seeded, continuously operated tubular crystallizer for the production of active pharmaceutical ingredients. Cryst Growth Des 2010;10(5):2247–57.
CrossRef
ADS
Google scholar
|
[129] |
Lawton S, Steele G, Shering P. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 2009;13(6):1357–63.
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |