用于复合材料结构生产的编织增强材料树脂灌注工艺模拟

工程(英文) ›› 2017, Vol. 3 ›› Issue (5) : 596-607.

PDF(2946 KB)
PDF(2946 KB)
工程(英文) ›› 2017, Vol. 3 ›› Issue (5) : 596-607. DOI: 10.1016/J.ENG.2017.04.006
研究论文
Research

用于复合材料结构生产的编织增强材料树脂灌注工艺模拟

作者信息 +

Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures

Author information +
History +

Abstract

Increasing demand for weight reduction and greater fuel efficiency continues to spur the use of composite materials in commercial aircraft structures. Subsequently, as composite aerostructures become larger and more complex, traditional autoclave manufacturing methods are becoming prohibitively expensive. This has prompted renewed interest in out-of-autoclave processing techniques in which resins are introduced into a reinforcing preform. However, the success of these resin infusion methods is highly dependent upon operator skill and experience, particularly in the development of new manufacturing strategies for complex parts. Process modeling, as a predictive computational tool, aims to address the issues of reliability and waste that result from traditional trial-and-error approaches. Basic modeling attempts, many of which are still used in industry, generally focus on simulating fluid flow through an isotropic porous reinforcement material. However, recent efforts are beginning to account for the multiscale and multidisciplinary complexity of woven materials, in simulations that can provide greater fidelity. In particular, new multi-physics process models are able to better predict the infusion behavior through textiles by considering the effect of fabric deformation on permeability and porosity properties within the reinforcing material. In addition to reviewing previous research related to process modeling and the current state of the art, this paper highlights the recent validation of a multi-physics process model against the experimental infusion of a complex double dome component. By accounting for deformation-dependent flow behavior, the multi-physics process model was able to predict realistic flow behavior, demonstrating considerable improvement over basic isotropic permeability models.

Keywords

Composite materials / Textile reinforcement / Draping / Infusion / Numerical modeling

引用本文

导出引用
. . Engineering. 2017, 3(5): 596-607 https://doi.org/10.1016/J.ENG.2017.04.006

参考文献

[1]
EADS Deutschland GmbH, Corporate Research Center. The research requirements of the transport sectors to facilitate an increased usage of composite materials. Part I : The composite material research requirements of the aerospace industry . Report. Munchen: EADS Deutschland GmbH, Corporate Research Center. 2004 Jun. Contract No.: G4RT-CT-2001-05054.
[2]
Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 2005;41(2):143–51.
CrossRef ADS Google scholar
[3]
Deo R, Starnes J, Holzwart R. Low-cost composite materials and structures for aircraft applications. Report. Hampton: NASA Langley Research Center; 2003 Oct. Report No.: 20030097981.
[4]
Roeseler WG, Sarh B, Kismarton MU. Composite structures: The first 100 years. In: Proceedings of the 16th International Conference on Composite Materials; 2007 Jul 9; Kyoto, Japan; 2007. p. 1–10.
[5]
Gardiner G.Resin-infused MS-21 wings and wingbox. High Performance Composites 2014;22(1):29.
[6]
Poe CC, Dexter HB, Raju IS. Review of the NASA textile composites research. J Aircr 1999;36(5):876–84.
CrossRef ADS Google scholar
[7]
Adumitroaie A, Barbero EJ. Beyond plain weave fabrics—II. Mechanical properties. Compos Struct 2011;93(5):1449–62.
CrossRef ADS Google scholar
[8]
Williams C, Summerscales J, Grove S. Resin infusion under flexible tooling (RIFT): A review. Compos Part A Appl Sci Manuf 1996;27(7):517–24.
CrossRef ADS Google scholar
[9]
Long AC , editor. Composites forming technologies.Cambridge: Woodhead Publishing; 2007.
[10]
[Smith P, Rudd CD, Long AC. The effect of shear deformation on the processing and mechanical properties of aligned reinforcements. Compos Sci Technol 1997;57(3):327–44.
CrossRef ADS Google scholar
[11]
Lomov SV, Huysmans G, Luo Y, Parnas RS, Prodromou A, Verpoest I, et al.Textile composites: Modeling strategies. Compos Part A Appl Sci Manuf 2001;32(10):1379–94.
CrossRef ADS Google scholar
[12]
Verleye B, Lomov SV, Long A, Verpoest I, Roose D. Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Compos Part A Appl Sci Manuf 2010;41(1):29–35.
CrossRef ADS Google scholar
[13]
Wang J, Page JR, Paton R. Experimental investigation of the draping properties of reinforcement fabrics. Compos Sci Technol 1998;58(2):229–37.
CrossRef ADS Google scholar
[14]
Flores FG, Oñate E. Applications of a rotation-free triangular element for finite strain analysis of thin shells and membranes. In: Oñate E, Kröplin B, editors Textile composites and inflatable structures. Dordrecht: Springer; 2005. p. 69–88.
[15]
Ten Thije RHW, Akkerman R. A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos Part A Appl Sci Manuf 2009;40(6–7):739–53.
CrossRef ADS Google scholar
[16]
Boisse P, Gasser A, Hivet G. Analyses of fabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations. Compos Part A Appl Sci Manuf 2001;32(10):1395–414.
CrossRef ADS Google scholar
[17]
Gasser A, Boisse P, Hanklar S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests. Comput Mater Sci 2000;17(1):7–20.
CrossRef ADS Google scholar
[18]
Boisse P, Zouari B, Daniel JL. Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Compos Part A Appl Sci Manuf 2006;37(12):2201–12.
CrossRef ADS Google scholar
[19]
ASTM International. ASTM D5035-11Standard test method for breaking force and elongation of textile fabrics (strip method). West Conshohocken: ASTM International; 201 5.
[20]
Kawabata S. The standardization and analysis of hand evaluation. Osaka: Osaka Tiger Printing Co., Ltd; 1980.
[21]
Potluri P, Perez Ciurezu DA, Ramgulam RB. Measurement of meso-scale shear deformations for modeling textile composites. Compos Part A Appl Sci Manuf 2006;37(2):303–14.
CrossRef ADS Google scholar
[22]
Culpin MF. The shearing of fabrics: A novel approach. J Textil Inst 1979;70(3):81–8.
CrossRef ADS Google scholar
[23]
Harrison P, Clifford MJ, Long AC. Shear characterization of viscous woven textile composites: A comparison between picture frame and bias extension experiments. Compos Sci Technol 2004;64(10–11):1453–65.
CrossRef ADS Google scholar
[24]
Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics. Compos Part A Appl Sci Manuf 2012;43(6):903–14.
CrossRef ADS Google scholar
[25]
Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, de Graaf EF, et al.Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part A Appl Sci Manuf 2008;39(6):1037–53.
CrossRef ADS Google scholar
[26]
D Ee Bilbao D, Soulat G, Hivet. Experimental study of bending behaviour of reinforcements . Exp Mech 2009;50(3):333–51.
CrossRef ADS Google scholar
[27]
Syerko E, Comas-Cardona S, Binetruy C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review. Compos Part A Appl Sci Manuf 2012;43(8):1365–88.
CrossRef ADS Google scholar
[28]
Mack C, Taylor HM. The fitting of woven cloth to surfaces. J Textil Inst Trans 1956;47(9):T477–88.
CrossRef ADS Google scholar
[29]
Van Der Weeën F. Algorithms for draping fabrics on doubly-curved surfaces. Int J Numer Methods Eng 1991;31(7):1415–26.
CrossRef ADS Google scholar
[30]
Breen DE, House DH, Wozny MJ. Predicting the drape of woven cloth using interacting particles. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques; 1994 Jul 24–29; Orlando, USA. New York: ACM; 1994. p. 365–72.
CrossRef ADS Google scholar
[31]
Dong L, Lekakou C, Bader MG. Processing of composites: Simulations of the draping of fabrics with updated material behaviour law. J Compos Mater 2001;35(2):138–63.
CrossRef ADS Google scholar
[32]
Peng XQ, Cao J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos Part A Appl Sci Manuf 2005;36(6):859–74.
CrossRef ADS Google scholar
[33]
Khan MA, Mabrouki T, Vidal-Sallé E, Boisse P. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol 2010;210(2):378–88.
CrossRef ADS Google scholar
[34]
T RHWen Thije R, Akkerman J, Huétink. Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng 2007;196(33–34):3141–50.
CrossRef ADS Google scholar
[35]
Badel P, Gauthier S, Vidal-Sallé E, Boisse P. Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Compos Part A Appl Sci Manuf 2009;40(8):997–1007.
CrossRef ADS Google scholar
[36]
Yu WR, Pourboghrat F, Chung K, Zampaloni M, Kang TJ. Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Compos Part A Appl Sci Manuf 2002;33(8):1095–105.
CrossRef ADS Google scholar
[37]
Xue P, Peng X, Cao J. A non-orthogonal constitutive model for characterizing woven composites. Compos Part A Appl Sci Manuf 2003;34(2):183–93.
CrossRef ADS Google scholar
[38]
Yu WR, Harrison P, Long A. Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Compos Part A Appl Sci Manuf 2005;36(8):1079–93.
CrossRef ADS Google scholar
[39]
Peng X, Ding F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation. Compos Part A Appl Sci Manuf 2011;42(4):400–7.
CrossRef ADS Google scholar
[40]
Peng X, Rehman ZU. Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Compos Sci Technol 2011;71(8):1075–81.
CrossRef ADS Google scholar
[41]
Jauffrès D, Sherwood JA, Morris CD, Chen J. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. Int J Mater Form 2010;3(Suppl 2):1205–16.
CrossRef ADS Google scholar
[42]
Durville D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 2010;3(Suppl 2):1241–51.
CrossRef ADS Google scholar
[43]
Badel P, Vidal-Sallé E, Boisse P. Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Comput Mater Sci 2007;40(4):439–48.
CrossRef ADS Google scholar
[44]
Hamila N, Boisse P. A meso-macro three node finite element for draping of textile composite preforms. Appl Compos Mater 2007;14(4):235–50.
CrossRef ADS Google scholar
[45]
Hamila N, Boisse P, Sabourin F, Brunet M. A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 2009;79(12):1443–66.
CrossRef ADS Google scholar
[46]
Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, et al.Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A Appl Sci Manuf 2011;42(6):612–22.
CrossRef ADS Google scholar
[47]
Boisse P, Aimène Y, Dogui A, Dridi S, Gatouillat S, Hamila N, et al.Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. Int J Mater Form 2010;3(Suppl 2):1229–40.
CrossRef ADS Google scholar
[48]
Advani SG, Simacek P. Liquid composite molding: Role of modeling and simulation in process advancement. In: Proceeding of the 20th International Conference on Composite Materials; 2015 Jul 19–24; Copenhagen: Denmark; 2015.
[49]
Šimáček P, AdvaniSG. Desirable features in mold filling simulations for liquid composite molding processes. Polym Compos 2004;25(4):355–67.
CrossRef ADS Google scholar
[50]
Weitzenböck JR, Shenoi RA, Wilson PA. Radial flow permeability measurement. Part A: Theory. Compos Part A Appl Sci Manuf 1999;30(6):781–96.
CrossRef ADS Google scholar
[51]
Sharma S, Siginer DA. Permeability measurement methods in porous media of fiber reinforced composites. Appl Mech Rev 2010;63(2):020802.
CrossRef ADS Google scholar
[52]
Arbter R, Beraud JM, Binetruy C, Bizet L, Bréard J, Comas-Cardona S, et al.Experimental determination of the permeability of textiles: A benchmark exercise. Compos Part A Appl Sci Manuf 2011;42(9):1157–68.
CrossRef ADS Google scholar
[53]
Vernet N, Ruiz E, Advani S, Alms JB, Aubert M, Barburski M, et al.Experimental determination of the permeability of engineering textiles: Benchmark II. Compos Part A Appl Sci Manuf 2014;61:172–84.
CrossRef ADS Google scholar
[54]
Park CH, Lebel A, Saouab A, Bréard J, Lee W. Modeling and simulation of voids and saturation in liquid composite molding processes. Compos Part A Appl Sci Manuf 2011;42(6):658–68.
CrossRef ADS Google scholar
[55]
Hoes K, Dinescu D, Sol H, Parnas RS, Lomov S. Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Compos Part A Appl Sci Manuf 2004;35(12):1407–18.
CrossRef ADS Google scholar
[56]
Endruweit A, Long AC. Influence of stochastic variations in the fiber spacing on the permeability of bi-directional textile fabrics. Compos Part A Appl Sci Manuf 2006;37(5):679–94.
CrossRef ADS Google scholar
[57]
Lundström TS, Stenberg R, Bergström R, Partanen H, Birkeland PA. In-plane permeability measurements: A nordic round-robin study. Compos Part A Appl Sci Manuf 2000;31(1):29–43.
CrossRef ADS Google scholar
[58]
Luo Y, Verpoest I, Hoes K, Vanheule M, Sol H, Cardon A. Permeability measurement of textile reinforcements with several test fluids. Compos Part A Appl Sci Manuf 2001;32(10):1497–504.
CrossRef ADS Google scholar
[59]
Endruweit A, McGregor P, Long AC, Johnson MS. Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values. Compos Sci Technol 2006;66(11–12):1778–92.
CrossRef ADS Google scholar
[60]
Ahn SH, Lee WI, Springer GS. Measurement of the three-dimensional permeability of fiber preforms using embedded fiber optic sensors. J Compos Mater 1995;29(6):714–33.
CrossRef ADS Google scholar
[61]
Carman PC. Flow of gases through porous media. New York: Academic Press; 1956.
[62]
Gebart BR. Permeability of unidirectional reinforcements for RTM. J Compos Mater 1992;26(8):1100–33.
CrossRef ADS Google scholar
[63]
Yu B, Lee LJ. A simplified in-plane permeability model for textile fabrics. Polym Compos 2000;21(5):660–85.
CrossRef ADS Google scholar
[64]
Dungan FD, Senoguz MT, Sastry AM, Faillaci DA. Simulations and experiments on low-pressure permeation of fabrics: Part I—3D modeling of unbalanced fabric. J Compos Mater 2001;35(14):1250–84.
[65]
Belov EB, Lomov SV, Verpoest I, Peters T, Roose D, Parnas RS, et al.Modeling of permeability of textile reinforcements: Lattice Boltzmann method. Compos Sci Technol 2004;64(7–8):1069–80.
CrossRef ADS Google scholar
[66]
Dunkers JP, Phelan FR, Zimba CG, Fly KM, Sanders DP, et al.The prediction of permeability for an epoxy/E-glass compsoite using optical coherence tomographic images. Polym Compos 2001;22(6):803–14.
CrossRef ADS Google scholar
[67]
Nedanov PB, Advani SG. Numerical computation of the fiber preform permeability tensor by the homogenization method. Polym Compos 2002;23(5):758–70.
CrossRef ADS Google scholar
[68]
Takano N, Zako M, Okazaki T, Terada K. Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory. Compos Sci Technol 2002;62(10–11):1347–56.
CrossRef ADS Google scholar
[69]
Verleye B, Croce R, Griebel M, Klitz M, Lomov SV, Morren G, et al.Permeability of textile reinforcements: Simulation, influence of shear and validation. Compos Sci Technol 2008;68(13):2804–10.
CrossRef ADS Google scholar
[70]
Loix F, Badel P, Orgéas L, Geindreau C, Boisse P. Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations. Compos Sci Technol 2008;68(7–8):1624–30.
CrossRef ADS Google scholar
[71]
Wong CC, Long AC, Sherburn M, Robitaille F, Harrison P, Rudd CD. Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Compos Part A Appl Sci Manuf 2006;37(6):847–57.
CrossRef ADS Google scholar
[72]
Lomov SV, Verpoest I, Peeters T, Roose D, Zako M. Nesting in textile laminates: Geometrical modeling of the laminate. Compos Sci Technol 2003;63(7):993–1007.
CrossRef ADS Google scholar
[73]
Vanaerschot A, Cox BN, Lomov SV, Vandepitte D. Stochastic multi-scale modeling of textile composites based on internal geometry variability. Comput Struc 2013;122:55–64.
CrossRef ADS Google scholar
[74]
Hammami A, Trochu F, Gauvin R, Wirth S. Directional permeability measurement of deformed reinforcement. J Reinf Plast Compos 1996;15(6):552–62.
CrossRef ADS Google scholar
[75]
Slade J, Sozer EM, Advani SG. Fluid impregnation of deformed preforms. J Reinf Plast Compos 2000;19(7):552–68.
CrossRef ADS Google scholar
[76]
Lai CL, Young WB. Model resin permeation of fiber reinforcements after shear deformation. Polym Compos 1997;18(5):642–8.
CrossRef ADS Google scholar
[77]
Trochu F, Gauvin R. Limitations of a boundary-fitted finite difference method for the simulation of the resin transfer molding proccess. J Reinf Plast Compos 1992;11(7):772–86.
CrossRef ADS Google scholar
[78]
Trochu F, Ruiz E, Achim V, Soukane S. Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos Part A Appl Sci Manuf 2006;37(6):890–902.
CrossRef ADS Google scholar
[79]
Soukane S, Trochu F. Application of the level set method to the simulation of resin transfer molding. Compos Sci Technol 2006;66(7–8):1067–80.
CrossRef ADS Google scholar
[80]
Bruschke MV, Advani SG. A finite element/control volume approach to mold filling in anisotropic porous media. Polym Compos 1990;11(6):398–405.
CrossRef ADS Google scholar
[81]
Kang MK, Lee WI, Hahn HT. Analysis of vacuum bag resin transfer molding process. Compos Part A Appl Sci Manuf 2001;32(11):1553–60.
CrossRef ADS Google scholar
[82]
Ngo ND, Mohan RV, Chung PW, Tamma KK, Shires DR. Recent developments encompassing non-isothermal/isothermal liquid composite molding process modeling/analysis: Physically accurate, computationally effective, and affordable simulations and validations. J Thermoplast Compos Mater 1998;11(6):493–532.
CrossRef ADS Google scholar
[83]
Phelan FR. Simulation of the injection process in resin transfer molding. Polym Compos 1997;18(4):460–76.
CrossRef ADS Google scholar
[84]
Luz FF, Amico SC, Souza JÁ, Barbosa ES, Barbosa de Lima AG. Resin transfer molding process: Fundamentals, numerical computation and experiments. In: Delgado JMPQ, Barbosa de Lima AG, da Silva MV, editors Numerical analysis of heat and mass transfer in porous media . Berlin: Springer-Verlag; 2012, p. 121–51.
CrossRef ADS Google scholar
[85]
Park J, Kang MK. A numerical simulation of the resin film infusion process. Compos Struct 2003;60(4):431–7.
CrossRef ADS Google scholar
[86]
Hirt C, Nichols B. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 1981;39(1):201–25.
CrossRef ADS Google scholar
[87]
Wang J, Waas AM, Wang H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct 2013;96:298–311.
CrossRef ADS Google scholar
[88]
Sas HS, Šimá Pč SGek, Advani. A methodology to reduce variability during vacuum infusion with optimized design of distribution media. Compos Part A Appl Sci Manuf 2015;78:223–33.
CrossRef ADS Google scholar
[89]
Wang J, Simacek P, Advani SG. Use of centroidal Voronoi diagram to find optimal gate locations to minimize mold filling time in resin transfer molding. Compos Part A Appl Sci Manuf 2016;87:243–55.
CrossRef ADS Google scholar
[90]
Lawrence JM, Fried P, Advani SG. Automated manufacturing environment to address bulk permeability variations and race tracking in resin transfer molding by redirecting flow with auxiliary gates. Compos Part A Appl Sci Manuf 2005;36(8):1128–41.
CrossRef ADS Google scholar
[91]
Correia NC, Robitaille F, Long AC, Rudd CD, Šimáček P, Advani. Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos Part A Appl Sci Manuf 2005;36(12):1645–56.
CrossRef ADS Google scholar
[92]
Yenilmez B, Senan M, SozerME. Variation of part thickness and compaction pressure in vacuum infusion process. Compos Sci Technol 2009;69(11–12):1710–9.
CrossRef ADS Google scholar
[93]
Govignon Q, Bickerton S, Kelly PA. Simulation of the reinforcement compaction and resin flow during the complete resin infusion process. Compos Part A Appl Sci Manuf 2010;41(1):45–57.
CrossRef ADS Google scholar
[94]
Nguyen QT, Vidal-Sallé E, Boisse P, Park CH, Saouab A, Bréard J, et al.Mesoscopic scale analyses of textile composite reinforcement compaction. Compos Part B Eng 2013;44(1):231–41.
CrossRef ADS Google scholar
[95]
Ruiz E, Achim V, Soukane S, Trochu F, Bréard J. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 2006;66(3–4):475–86.
CrossRef ADS Google scholar
[96]
Walther J. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites [dissertation]. Newark: University of Delaware; 2011.
[97]
Walther J, Simacek P, Advani SG. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. Int J Mater Form 2012;5(1):83–97.
CrossRef ADS Google scholar
[98]
Pierce RS, Falzon BG,Thompson MC. A multi-physics process model for simulating the manufacture of resin-infused composite aerostructures. Compos Sci Technol 2017;149:269–79.
CrossRef ADS Google scholar
[99]
Pierce RS, Falzon BG, Thompson MC, Boman R. Implementation of a non-orthogonal constitutive model for the finite element simulation of textile composite draping. Appl Mech Mater 2014;553:76–81.
CrossRef ADS Google scholar
[100]
Pierce RS, Falzon BG, Thompson MC, Boman R. A low-cost digital image correlation technique for characterising the shear deformation of fabrics for draping studies. Strain 2015;51(3):180–9.
CrossRef ADS Google scholar
[101]
Pierce RS, Falzon BG, Thompson MC. Permeability characterization of sheared carbon fiber textile preform. Polym Compos. Epub 2016 Sep 15.
CrossRef ADS Google scholar

Acknowledgements

This research was originally supported under the Australian Research Council’s Linkage Projects funding scheme (LP100100508) at Monash University in partnership with Boeing Research & Technology Australia. The second author would also like to acknowledge the financial support of Bombardier and the Royal Academy of Engineering.

Compliance with ethics guidelines

Robert S. Pierce and Brian G. Falzon declare that they have no conflict of interest or financial conflicts to disclose.

版权

2017 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(2946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/