一种将拓扑优化设计转化为增材制造结构的实现方法

Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang

工程(英文) ›› 2018, Vol. 4 ›› Issue (2) : 277-285.

PDF(3014 KB)
PDF(3014 KB)
工程(英文) ›› 2018, Vol. 4 ›› Issue (2) : 277-285. DOI: 10.1016/j.eng.2017.09.002
研究论文
Research

一种将拓扑优化设计转化为增材制造结构的实现方法

作者信息 +

A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures

Author information +
History +

Abstract

Topology optimization is a powerful design approach that is used to determine the optimal topology in order to obtain the desired functional performance. It has been widely used to improve structural performance in engineering fields such as in the aerospace and automobile industries. However, some gaps still exist between topology optimization and engineering application, which significantly hinder the application of topology optimization. One of these gaps is how to interpret topology results, especially those obtained using the density framework, into parametric computer-aided design (CAD) models that are ready for subsequent shape optimization and manufacturing. In this paper, a new method for interpreting topology optimization results into stereolithography (STL) models and parametric CAD models is proposed. First, we extract the skeleton of the topology optimization result in order to ensure shape preservation and use a filtering method to ensure characteristics preservation. After this process, the distribution of the nodes in the boundary of the topology optimization result is denser, which will benefit the subsequent curve fitting. Using the curvature and the derivative of curvature of the uniform B-spline curve, an adaptive B-spline fitting method is proposed in order to obtain a parametric CAD model with the fewest control points meeting the requirement of the fitting error. A case study is presented to provide a detailed description of the proposed method, and two more examples are shown to demonstrate the validity and versatility of the proposed method.

Keywords

Topology optimization / Additive manufacturing / Characteristics preservation / Adaptive fitting / Shape optimization

引用本文

导出引用
Shutian Liu, Quhao Li, Junhuan Liu. 一种将拓扑优化设计转化为增材制造结构的实现方法. Engineering. 2018, 4(2): 277-285 https://doi.org/10.1016/j.eng.2017.09.002

参考文献

[1]
J. Zhu, W. Zhang, P. Beckers. Integrated layout design of multi-component system. Int J Numer Methods Eng, 78 (6) (2009), pp. 631-651. DOI: 10.1002/nme.2499
[2]
S. Liu, R. Hu, Q. Li, P. Zhou, Z. Dong, R. Kang. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope. Appl Opt, 53 (35) (2014), pp. 8318-8325
[3]
M. Zhou, G.I.N. Rozvany. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng, 89 (1-3) (1991), pp. 309-336
[4]
M.P. Bendsøe, O. Sigmund. Material interpolation schemes in topology optimization. Arch Appl Mech, 69 (9-10) (1999), pp. 635-654
[5]
G. Allaire, F. Jouve, A.M. Toader. A level-set method for shape optimization. C R Math, 334 (12) (2002), pp. 1125-1130. DOI: 10.1016/s1631-073x(02)02412-3
[6]
M.Y. Wang, X. Wang, D. Guo. A level set method for structural topology optimization. Comput Methods Appl Mech Eng, 192 (1-2) (2003), pp. 227-246
[7]
Y.M. Xie, G.P. Steven. A simple evolutionary procedure for structural optimization. Comput Struct, 49 (5) (1993), pp. 885-896
[8]
O. Sigmund, K. Maute. Topology optimization approaches. Struct Multidiscip Optim, 48 (6) (2013), pp. 1031-1055. DOI: 10.1007/s00158-013-0978-6
[9]
I. Gibson, D.W. Rosen, B. Stucker. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, Boston (2010)
[10]
L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, et al.. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 28 (1) (2012), pp. 1-14. DOI: 10.1155/2012/245727
[11]
B.N. Turner, R. Strong, S.A. Gold.A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J, 20 (2014), pp. 192-204
[12]
N. Hopkinson, R.J.M. Hague, P.M. Dickens (Eds.), Rapid manufacturing: an industrial revolution for the digital age, John Wiley & Sons, Ltd., Chichester (2006)
[13]
P. Han. Additive design and manufacturing of jet engine parts. Engineering, 3 (5) (2017), pp. 648-652
[14]
B. Lu, D. Li, X. Tian. Development trends in additive manufacturing and 3D printing. Engineering, 1 (1) (2015), pp. 85-89
[15]
J. An, J.E.M. Teoh, R. Suntornnond, C.K. Chua. Design and 3D printing of scaffolds and tissues. Engineering, 1 (2) (2015), pp. 261-268. DOI: 10.15302/J-ENG-2015061
[16]
A.Y. Lee, J. An, C.K. Chua. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory. Engineering, 3 (5) (2017), pp. 663-674
[17]
S. Liu, Q. Li, W. Chen, L. Tong, G. Cheng. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front Mech Eng, 10 (2) (2015), pp. 126-137. DOI: 10.1007/s11465-015-0340-3
[18]
Q. Li, W. Chen, S. Liu, L. Tong. Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim, 54 (4) (2016), pp. 971-984. DOI: 10.1007/s00158-016-1459-5
[19]
K. Wang, C.C. Ho, C. Zhang, B. Wang. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering, 3 (5) (2017), pp. 653-662
[20]
R.B. Cleveland, W.S. Cleveland, J.E. McRae, I. Terpenning. STL: a seasonal-trend decomposition procedure based on loess. J Off Stat, 6 (1) (1990), pp. 3-33
[21]
M.H. Liewald. Initial graphics exchange specification: successes and evolution. Comput Graph, 9 (1) (1985), pp. 47-50
[22]
A.V. Kumar, D.C. Gossard. Synthesis of optimal shape and topology of structures. J Mech Des, 118 (1) (1996), pp. 68-74. DOI: 10.1115/1.2826858
[23]
Y.L. Hsu, M.S. Hsu, C.T. Chen. Interpreting results from topology optimization using density contours. Comput Struct, 79 (10) (2001), pp. 1049-1058
[24]
M.H. Hsu, Y.L. Hsu. Interpreting three-dimensional structural topology optimization results. Comput Struct, 83 (4-5) (2005), pp. 327-337
[25]
C. Li, I.Y. Kim, J. Jeswiet. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim, 51 (2) (2015), pp. 547-564. DOI: 10.1007/s00158-014-1151-6
[26]
S. Larsen, C.G. Jensen. Converting topology optimization results into parametric CAD models. Comput Aided Des Appl, 6 (3) (2009), pp. 407-418. DOI: 10.3722/cadaps.2009.407-418
[27]
C.Y. Lin, L.S. Chao. Automated image interpretation for integrated topology and shape optimization. Struct Multidiscip Optim, 20 (2) (2000), pp. 125-137
[28]
T. Zegard, G.H. Paulino. Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim, 53 (1) (2016), pp. 175-192. DOI: 10.1007/s00158-015-1274-4
[29]
A.R. Yildiz, N. Öztürk, N. Kaya, F. Öztürk. Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim, 25 (4) (2003), pp. 251-260
[30]
A.L. Marsan, D. Dutta. Construction of a surface model and layered manufacturing data from 3D homogenization output. J Mech Des, 118 (3) (1996), pp. 412-418. DOI: 10.1115/1.2826901
[31]
P.S. Tang, K.H. Chang. Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim, 22 (1) (2001), pp. 65-82
[32]
P.Y. Papalambros, M. Chirehdast. An integrated environment for structural configuration design. J Eng Des, 1 (1) (1990), pp. 73-96. DOI: 10.1080/09544829008901645
[33]
K.H. Chang, P.S. Tang. Integration of design and manufacturing for structural shape optimization. Adv Eng Softw, 32 (7) (2001), pp. 555-567
[34]
A. Koguchi, N. Kikuchi. A surface reconstruction algorithm for topology optimization. Eng Comput, 22 (1) (2006), pp. 1-10. DOI: 10.1007/s00366-006-0023-0
[35]
J.M. Chacón, J.C. Bellido, A. Donoso. Integration of topology optimized designs into CAD/CAM via an IGES translator. Struct Multidiscip Optim, 50 (6) (2014), pp. 1115-1125. DOI: 10.1007/s00158-014-1099-6
[36]
G. Yi, N.H. Kim. Identifying boundaries of topology optimization results using basic parametric features. Struct Multidiscip Optim, 55 (5) (2017), pp. 1641-1654. DOI: 10.1007/s00158-016-1597-9
[37]
M.P. Bendsøe, N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng, 71 (2) (1988), pp. 197-224
[38]
M.P. Bendsøe. Optimal shape design as a material distribution problem. Struct Optim, 1 (4) (1989), pp. 193-202
[39]
K.T. Cheng, N. Olhoff. An investigation concerning optimal design of solid elastic plates. Int J Solids Struct, 17 (3) (1981), pp. 305-323
[40]
K. Svanberg. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng, 24 (2) (1987), pp. 359-373. DOI: 10.1002/nme.1620240207
[41]
O. Sigmund. A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim, 21 (2) (2001), pp. 120-127
[42]
E. Andreassen, A. Clausen, M. Schevenels, B.S. Lazarov, O. Sigmund. Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim, 43 (1) (2011), pp. 1-16. DOI: 10.1007/s00158-010-0594-7
[43]
K. Liu, A. Tovar. An efficient 3D topology optimization code written in MATLAB. Struct Multidiscip Optim, 50 (6) (2014), pp. 1175-1196. DOI: 10.1007/s00158-014-1107-x
PDF(3014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/