[1] |
G. Morgenthal, Y. Yamasaki. Behaviour of very long cable-stayed bridges during erection. Proc Inst Civ Eng—Bridge Eng, 163 (4) ( 2010), pp. 213-224. DOI: 10.1680/bren.2010.4.213
|
[2] |
R.H. Scanlan. The action of flexible bridges under wind, I: Flutter theory. J Sound Vib, 60 (2) (1978), pp. 187-199
|
[3] |
R.H. Scanlan. The action of flexible bridges under wind, II: buffeting theory. J Sound Vib, 60 (2) (1978), pp. 201-211
|
[4] |
A.G. Davenport. The response of slender, line-like structures to a gusty wind. Proc Inst Civ Eng, 23 (3) ( 1962), pp. 389-408. DOI: 10.1680/iicep.1962.10876
|
[5] |
G. Diana, S. Bruni, A. Cigada, A. Collina. Turbulence effect on flutter velocity in long span suspended bridges. J Wind Eng Ind Aerod, 48 (2-3) (1993), pp. 329-342
|
[6] |
X.Z. Chen, A. Kareem. Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech, 128 (11) (2002), pp. 1193-1205
|
[7] |
Y.J. Ge, H.F. Xiang. Computational models and methods for aerodynamic flutter of long-span bridges. J Wind Eng Ind Aerod, 96 (10-11) (2008), pp. 1912-1924
|
[8] |
G. Morgenthal, A.S. Corriols, B. Bendig. A GPU-accelerated pseudo-3D vortex method for aerodynamic analysis. J Wind Eng Ind Aerod, 125 (2014), pp. 69-80
|
[9] |
A. Larsen, J.H. Walther. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. J Wind Eng Ind Aerod, 67-68 (1997), pp. 253-265
|
[10] |
I. Kovacs, H.S. Svensson, E. Jordet. Analytical aerodynamic investigation of cable-stayed Helgeland Bridge. J Struct Eng, 118 (1) (1992), pp. 147-168
|
[11] |
C. Borri, C. Costa. Quasi-steady analysis of a two-dimensional bridge deck element. Comput Struct, 82 (13-14) (2004), pp. 993-1006
|
[12] |
R.H. Scanlan, J.G. B’eliveau, K.S. Budlong. Indicial aerodynamic functions for bridge decks. J Eng Mech, 100 ( 1974), pp. 657-672. DOI: 10.1061/jmcea3.0001912
|
[13] |
L. Caracoglia, N.P. Jones. Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections. J Wind Eng Ind Aerod, 91 (3) (2003), pp. 371-402
|
[14] |
X.Z. Chen, M. Matsumoto, A. Kareem. Time domain flutter and buffeting response analysis of bridges. J Eng Mech, 126 (1) (2000), pp. 7-16
|
[15] |
K. Wilde, Y. Fujino, J. Masukawa. Time domain modeling of bridge deck flutter. J Struct Mech Earthquake Eng, 13 (2) ( 1996), pp. 19-30. DOI: 10.2208/jscej.1996.543_19
|
[16] |
O. Øiseth, A. Rönnquist, R. Sigbjörnsson. Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. J Wind Eng Ind Aerod, 98 (12) (2010), pp. 730-741
|
[17] |
X.Z. Chen, A. Kareem. Advanced analysis of coupled buffeting response of bridges: a complex modal decomposition approach. Probabilist Eng Mech, 17 (2) (2002), pp. 201-213
|
[18] |
X.Z. Chen, A. Kareem. Nonlinear response analysis of long-span bridges under turbulent winds. J Wind Eng Ind Aerod, 89 (14-15) (2001), pp. 1335-1350
|
[19] |
G. Diana, D. Rocchi, T. Argentini. An experimental validation of a band superposition model of the aerodynamic forces acting on multi-box deck sections. J Wind Eng Ind Aerod, 113 (2013), pp. 40-58
|
[20] |
G. Diana, F. Resta, D. Rocchi. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain. J Wind Eng Ind Aerod, 96 (10-11) (2008), pp. 1871-1884
|
[21] |
G. Diana, D. Rocchi, T. Argentini, S. Muggiasca. Aerodynamic instability of a bridge deck section model: linear and nonlinear approach to force modeling. J Wind Eng Ind Aerod, 98 (6-7) (2010), pp. 363-374
|
[22] |
T. Wu, A. Kareem. A nonlinear convolution scheme to simulate bridge aerodynamics. Comput Struct, 128 (2013), pp. 259-271
|
[23] |
F. Petrini, F. Giuliano, F. Bontempi. Comparison of time domain techniques for the evaluation of the response and the stability in long span suspension bridges. Comput Struct, 85 (11-14) (2007), pp. 1032-1048
|
[24] |
L. Salvatori, C. Borri. Frequency- and time-domain methods for the numerical modeling of full-bridge aeroelasticity. Comput Struct, 85 (11-14) (2007), pp. 675-687
|
[25] |
M. Lazzari. Time domain modelling of aeroelastic bridge decks: a comparative study and an application. Int J Numer Meth Eng, 62 (8) ( 2005), pp. 1064-1104. DOI: 10.1002/nme.1238
|
[26] |
T. Wu, A. Kareem. Revisiting convolution scheme in bridge aerodynamics: comparison of step and impulse response functions. J Eng Mech, 140 (5) (2014), pp. 1-13
|
[27] |
M. Lazzari, R.V. Vitalini, A.V. Saetta. Aeroelastic forces and dynamic response of long-span bridges. Int J Numer Meth Eng, 60 (6) (2004), pp. 1011-1048
|
[28] |
O. Øiseth, A. Rönnquist, R. Sigbjörnsson. Time domain modeling of self-excited aerodynamic forces for cable-supported bridges: a comparative study. Comput Struct, 89 (13-14) (2011), pp. 1306-1322
|
[29] |
T. Wu, A. Kareem. Bridge aerodynamics and aeroelasticity: a comparison of modeling schemes. J Fluid Struct, 43 (2013), pp. 347-370
|
[30] |
H. Katsuchi, N.P. Jones, R.H. Scanlan, H. Akiyama. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo Bridge. J Wind Eng Ind Aerod, 77-78 (1998), pp. 431-441
|
[31] |
T. Abbas, I. Kavrakov, G. Morgenthal. Methods for flutter stability analysis of long-span bridges: A review. Bridge Eng, 170 (4) ( 2017), pp. 271-310. DOI: 10.1680/jbren.15.00039
|
[32] |
F. Tubino. Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for long-span bridges. J Wind Eng Ind Aerod, 93 (12) (2005), pp. 929-950
|
[33] |
T. Argentini, D. Rocchi, S. Muggiasca, A. Zasso. Cross-sectional distributions versus integrated coefficients of flutter derivatives and aerodynamic admittances identified with surface pressure measurement. J Wind Eng Ind Aerod, 104-106 (2012), pp. 152-158
|
[34] |
G. Diana, S. Bruni, A. Cigada, E. Zappa. Complex aerodynamic admittance function role in buffeting response of a bridge deck. J Wind Eng Ind Aerod, 90 (12-15) (2002), pp. 2057-2072
|
[35] |
G.L. Larose. Experimental determination of the aerodynamic admittance of a bridge deck segment. J Fluid Struct, 13 (7-8) (1999), pp. 1029-1040
|
[36] |
A.K. Chopra.Dynamics of structures. (4th ed.), Pearson, London (2011)
|
[37] |
Z.Q. Chen, Y. Han, X.G. Hua, Y.Z. Luo. Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan Bridge. Eng Struct, 31 (2) (2009), pp. 417-431
|
[38] |
X.Z. Chen, A. Kareem. Aeroelastic analysis of bridges under multicorrelated winds: integrated state-space approach. J Eng Mech, 127 (11) (2001), pp. 1124-1134
|
[39] |
G. Morgenthal. Aerodynamic analysis of structures using high-resolution vortex particle methods [dissertation]. University of Cambridge, Cambridge (2002)
|
[40] |
R.H. Scanlan. Motion-related body-force functions in two-dimensional low-speed flow. J Fluid Struct, 14 (1) (2000), pp. 49-63
|
[41] |
Q.S. Ding, L.D. Zhu, H.F. Xiang. An efficient ergodic simulation of multivariate stochastic processes with spectral representation. Probabilist Eng Mech, 26 (2) (2011), pp. 350-356
|
[42] |
G. Solari, G. Piccardo. Probabilistic 3D turbulence modeling for gust buffeting of structures. Probabilist Eng Mech, 16 (1) (2001), pp. 73-86
|
[43] |
Y.J. Ge, H. Tanaka. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches. J Wind Eng Ind Aerod, 86 (2-3) (2000), pp. 123-153
|
[44] |
A. Larsen, J.H. Walther. Discrete vortex simulation of flow around five generic bridge deck sections. J Wind Eng Ind Aerod, 72-78 (1998), pp. 591-602
|
[45] |
M. Matsumoto, Y. Daito, F. Yoshizumi, Y. Ichikawa, T. Yabutani. Torsional flutter of bluff bodies. J Wind Eng Ind Aerod, 69-71 (1997), pp. 871-882
|